如何构建一个基于YOLOv8深度学习框架_深度学习的肺炎诊断系统 基于python与PyQT5开发

如何构建一个基于YOLOv8深度学习框架_深度学习的肺炎诊断系统 基于python与PyQT5开发

想要构建一个自动分析病人X射线肺部图像,快速地识别出肺炎征状。

下面将提供一个更为详细的训练代码示例。这个示例包括数据准备、模型配置、训练过程以及一些基本的评估步骤。

以下文章及代码仅供参考。

1. 数据准备

假设你的数据集已经按照YOLO格式标注好,并且被正确地分为训练集和验证集。你需要创建一个data.yaml文件来描述数据集的位置和类别信息。

data.yaml 示例
# data.yaml
train: ./datasets/train/images  # 训练图像路径
val: ./datasets/val/images      # 验证图像路径

nc: 2                           # 类别数量:正常和肺炎
names: ['normal', 'pneumonia']  # 类别名称列表

确保路径与你的实际数据集位置匹配。

2. 模型训练代码

接下来是具体的训练代码。我们将使用YOLOv8进行模型训练。

from ultralytics import YOLO
import os

def train_pneumonia_detection_model():
    # 设置数据集和模型保存路径
    data_yaml_path = './data.yaml'  # 修改为你的data.yaml路径
    model_save_dir = './runs/detect'  # 模型保存目录
    model_name = 'yolov8n.pt'  # 预训练模型名称,可选'n', 's', 'm', 'l', 'x'

    # 加载预训练模型
    model = YOLO(model_name)

    # 开始训练
    results = model.train(
        data=data_yaml_path,
        epochs=100,  # 根据需要调整epoch数
        imgsz=640,   # 输入图像尺寸
        batch=16,    # 批量大小,根据GPU内存调整
        name='pneumonia_detection',  # 实验名称,结果将保存在runs/detect/pneumonia_detection下
        save=True,   # 是否保存最佳模型
        exist_ok=True  # 如果实验目录存在,是否覆盖
    )

    print("Training completed. Results saved to:", os.path.join(model_save_dir, 'pneumonia_detection'))

if __name__ == "__main__":
    train_pneumonia_detection_model()

3. 模型评估

训练完成后,你可以对模型进行评估,以查看其在验证集上的表现。

from ultralytics import YOLO

def evaluate_model():
    # 加载最佳模型
    best_model_path = './runs/detect/pneumonia_detection/weights/best.pt'
    model = YOLO(best_model_path)

    # 在验证集上评估模型
    metrics = model.val()

    # 输出评估指标
    print("Model evaluation metrics:", metrics)

if __name__ == "__main__":
    evaluate_model()

4. 使用训练好的模型进行预测

基于训练好的模型,我们可以对新图像进行预测,并可视化结果。

from ultralytics import YOLO
import cv2
import numpy as np
from PIL import Image, ImageDraw

def detect_image(image_path):
    # 加载训练好的模型
    best_model_path = './runs/detect/pneumonia_detection/weights/best.pt'
    model = YOLO(best_model_path)

    # 进行预测
    results = model.predict(image_path, conf=0.5)  # 置信度阈值设为0.5

    # 处理预测结果
    for result in results:
        for box in result.boxes:
            cls, conf, bbox = box.cls.item(), box.conf.item(), box.xyxy.tolist()
            label = model.model.names[int(cls)]
            print(f"Detected {label} with confidence {conf:.2f} at {bbox}")

            # 可视化结果(可选)
            img = Image.open(image_path)
            draw = ImageDraw.Draw(img)
            draw.rectangle(bbox, outline="red", width=3)
            img.show()  # 显示图像

if __name__ == "__main__":
    image_path = 'path/to/test/image.jpg'  # 替换为你要测试的图像路径
    detect_image(image_path)

5. 总结

在这里插入图片描述

如何运行_这项技术可以提升诊断的速度和准确率,减轻医疗工作人员的负担,以及改善疾病监测和响应速度。基于YOLOv8深度学习框架,通过几千张图片,训练了一个进行智能肺炎诊断的识别模型,可通过病人X射线肺部图像判断病人是否患有肺炎。在这里插入图片描述

构建一个基于YOLOv8深度学习框架的智能肺炎诊断系统,并使用Python与PyQt5开发UI界面,听起来是一个非常棒的学习项目。我们将分步骤进行,从环境搭建、数据准备、模型训练到UI开发。
在这里插入图片描述

第一步:环境搭建

首先,你需要确保你的开发环境已经准备好。以下是推荐的步骤:

  1. 安装Python:建议使用最新版本的Python。
  2. 创建虚拟环境(可选但推荐):
    python -m venv pneumonia_env
    source pneumonia_env/bin/activate  # Linux/MacOS
    pneumonia_env\Scripts\activate  # Windows
    
  3. 安装必要的库
    pip install ultralytics PyQt5 opencv-python numpy matplotlib
    

第二步:数据准备

假设你已经有了标注好的X射线图像数据集,并且它们已经被分为训练集和验证集。如果你的数据集是以VOC格式存储的,请将其转换为YOLO格式。

创建data.yaml文件

在你的项目目录下创建一个data.yaml文件,用于描述数据集的位置和类别信息:

train: ./datasets/train/images  # 训练图像路径
val: ./datasets/val/images      # 验证图像路径

nc: 2                           # 类别数量:正常和肺炎
names: ['normal', 'pneumonia']  # 类别名称列表

第三步:模型训练

接下来是使用YOLOv8来训练你的模型。

from ultralytics import YOLO

# 设置数据集和模型保存路径
data_yaml_path = './data.yaml'
model_save_dir = './runs/detect'  # 模型保存目录
model_name = 'yolov8n.pt'  # 预训练模型名称

# 加载预训练模型
model = YOLO(model_name)

# 开始训练
results = model.train(
    data=data_yaml_path, 
    epochs=100,  # 根据需要调整epoch数
    imgsz=640,   # 输入图像尺寸
    batch=16,    # 批量大小,根据GPU内存调整
    name='pneumonia_detection',  # 实验名称
    save=True,   # 是否保存最佳模型
    exist_ok=True  # 如果实验目录存在,是否覆盖
)

第四步:开发UI界面

下面是一个简单的基于PyQt5的UI示例,支持图片加载、批量图片处理以及摄像头检测功能。

import sys
from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QVBoxLayout, QWidget, QPushButton, QFileDialog
from PyQt5.QtGui import QPixmap
import cv2
import numpy as np
from ultralytics import YOLO

class PneumoniaDetectionApp(QMainWindow):
    def __init__(self):
        super().__init__()
        self.setWindowTitle("智能肺炎诊断系统")
        self.setGeometry(100, 100, 800, 600)
        
        self.image_label = QLabel(self)
        self.button_load_image = QPushButton('加载图片', self)
        self.button_load_image.clicked.connect(self.load_image)
        self.button_batch_process = QPushButton('批量处理', self)
        self.button_batch_process.clicked.connect(self.batch_process)
        self.button_camera_detect = QPushButton('摄像头检测', self)
        self.button_camera_detect.clicked.connect(self.camera_detect)
        
        layout = QVBoxLayout()
        layout.addWidget(self.button_load_image)
        layout.addWidget(self.button_batch_process)
        layout.addWidget(self.button_camera_detect)
        layout.addWidget(self.image_label)
        
        container = QWidget()
        container.setLayout(layout)
        self.setCentralWidget(container)
        
        self.model = YOLO('./runs/detect/pneumonia_detection/weights/best.pt')
    
    def load_image(self):
        options = QFileDialog.Options()
        file_name, _ = QFileDialog.getOpenFileName(self, "选择图片", "", "Images (*.png *.xpm *.jpg);;All Files (*)", options=options)
        if file_name:
            self.detect_pneumonia(file_name)
    
    def detect_pneumonia(self, image_path):
        img = cv2.imread(image_path)
        results = self.model.predict(img, conf=0.5)
        
        for result in results:
            for box in result.boxes:
                x1, y1, x2, y2, conf, cls = box.xyxy.numpy(), box.conf.numpy(), box.cls.numpy()
                label = self.model.names[int(cls)]
                if conf >= 0.5:
                    cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
                    cv2.putText(img, f'{label} {conf:.2f}', (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
        
        rgb_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        h, w, ch = rgb_img.shape
        bytes_per_line = ch * w
        convert_to_Qt_format = QImage(rgb_img.data, w, h, bytes_per_line, QImage.Format_RGB888)
        p = convert_to_Qt_format.scaled(800, 600, aspectRatioMode=1)
        self.image_label.setPixmap(QPixmap.fromImage(p))
    
    def batch_process(self):
        # TODO: 实现批量图片处理逻辑
        pass
    
    def camera_detect(self):
        cap = cv2.VideoCapture(0)
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            results = self.model.predict(frame, conf=0.5)
            
            for result in results:
                for box in result.boxes:
                    x1, y1, x2, y2, conf, cls = box.xyxy.numpy(), box.conf.numpy(), box.cls.numpy()
                    label = self.model.names[int(cls)]
                    if conf >= 0.5:
                        cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
                        cv2.putText(frame, f'{label} {conf:.2f}', (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
            
            cv2.imshow('Camera Detection', frame)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
        
        cap.release()
        cv2.destroyAllWindows()

if __name__ == "__main__":
    app = QApplication(sys.argv)
    window = PneumoniaDetectionApp()
    window.show()
    sys.exit(app.exec_())
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值