自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(17)
  • 收藏
  • 关注

原创 最新!!!IDEA下载(java)

本文介绍了IntelliJ IDEA的下载安装及配置方法。首先需访问官网下载社区免费版,选择安装路径并完成安装。配置时跳过初始设置,创建项目时可选择自动安装JDK,最后点击创建即可完成整个流程。该指南简明扼要地展示了从下载到配置IntelliJ IDEA的关键步骤。

2025-07-10 14:57:59 480

原创 【深度学习】【入门】Sequential的使用和简单神经网络搭建

本文介绍了神经网络构建中的Sequential容器的概念与作用。Sequential是一种按顺序封装神经网络层的容器,能简化网络搭建流程。其优势体现在代码简洁化、结构清晰化和框架适配性三个方面,与手动搭建相比更加高效。Sequential的核心特征包括严格的顺序性、对各类网络层的支持以及更直观的结构呈现。文章通过一个包含卷积层、池化层和全连接层的简单神经网络示例,展示了如何使用PyTorch中的Sequential模块实现网络搭建,并通过TensorBoard可视化网络结构。该示例验证了Sequential

2025-07-09 19:25:27 769

原创 【深度学习】【入门】Linear和flatten

本文介绍了神经网络中的两个基础结构:Linear层和Flatten层。Linear层作为全连接层,通过权重矩阵和偏置向量进行线性变换,实现特征整合与输出映射。它需要明确的输入输出维度,计算公式为y=x*W+b。Flatten层则用于将多维张量展平为一维向量(保留批量维度),以便输入到Linear层。文中通过PyTorch代码示例展示了这两个层的具体用法,Linear层示例将一个100维输入转换为10维输出,Flatten层示例将(2,3,4,4)张量展平为(2,48)。这两个层在神经网络中起着重要的数据转换

2025-07-08 16:34:52 773

原创 【深度学习】【入门】非线性激活

神经网络通过引入非线性激活函数突破线性模型的限制,使网络具备处理复杂非线性问题的能力。常见的激活函数包括ReLU和Sigmoid:ReLU对正值保持线性输出,负值输出为零;Sigmoid则将输入压缩到(0,1)区间,适用于概率输出。这些非线性变换赋予神经网络模拟复杂函数的能力,使其能够学习和识别各种数据模式。

2025-07-06 08:15:00 393

原创 【深度学习】【入门】池化层

池化层是深度学习中重要的下采样操作,主要分为最大池化和平均池化两种类型。最大池化选取窗口内最大值,适合边缘检测;平均池化计算窗口平均值,能平滑噪声保留整体特征。池化层的作用包括:降低特征图尺寸以减少计算量、增强模型对平移和旋转的鲁棒性、防止过拟合。此外还有随机池化和全局池化等特殊方法。代码示例展示了PyTorch中MaxPool2d的实现,通过设置kernel_size、stride等参数控制池化效果。池化层通过保留关键信息、忽略冗余细节,有效提升了深度学习模型的性能和效率。

2025-07-05 09:00:00 957

原创 【深度学习】【入门】卷积层

卷积层是CNN的核心组件,主要通过卷积核进行特征提取。卷积核作为小型滤波器,通过滑动计算提取局部特征(如边缘、纹理),其参数通过训练学习得到。卷积运算涉及输入图像与卷积核的逐点相乘求和,生成特征图。为控制输出尺寸和保留边缘信息,引入了填充(Padding)和步幅(Stride)概念。通道(Channel)处理多维度数据,如RGB图像的三个颜色通道。PyTorch中的nn.Conv2d模块实现卷积层,参数包括输入/输出通道数、卷积核大小、步幅、填充等,支持不同类型的卷积操作。通过合理设置这些参数,可以优化模型

2025-07-04 11:12:04 1163

原创 【深度学习】【入门】神经网络的基本骨架nn.Module

PyTorch中构建神经网络的核心是继承nn.Module基类,它封装了网络层定义、参数管理和前向传播逻辑。示例展示了如何创建简单模型:定义类继承nn.Module,在__init__中初始化网络层,在forward方法中实现前向传播。调用父类构造函数和执行前向计算是必要操作。最后通过实例演示了一个简单的加法网络,输入1.0经过网络处理后输出2.0。nn.Module的主要优势在于自动处理梯度计算和参数优化。

2025-07-03 09:30:01 209

原创 【深度学习】【入门】DataLoader的使用

PyTorch中的DataLoader是用于高效加载和批处理数据的工具类。文章介绍了DataLoader的常用参数:dataset(必选数据集)、batch_size(批量大小)、shuffle(是否打乱数据)、num_workers(子进程数)和drop_last(是否丢弃不完整批次)。通过CIFAR10数据集示例演示了DataLoader的使用,重点解决了TensorBoard中add_image和add_images方法的区别问题。当batch_size=4时,应使用add_images显示批量图像。

2025-07-01 14:59:35 566

原创 【深度学习】【入门】torchvision中数据集的使用 (CIFAR10)

torchvision提供多种经典计算机视觉数据集,包括MNIST(28×28灰度手写数字)、CIFAR-10(32×32彩色10类物体)和ImageNet(百万级高分辨率图像)。所有数据集共享root、train、download等核心参数,支持transform预处理。CIFAR-10特别支持train参数区分训练/测试集,并可通过ToTensor()转换为张量格式。用户还能使用ImageFolder加载自定义分类数据集。这些预置数据集简化了计算机视觉任务的实验流程,支持从入门到前沿的各种研究需求。

2025-06-24 20:56:19 415

原创 【深度学习】【入门】Transforms的使用

本文介绍了深度学习数据预处理中常见的Transforms操作。首先概述了Transforms在图像分类、目标检测等场景中的重要性。然后详细讲解了四种基础工具:1)ToTensor将PIL图像转为张量;2)Normalize用均值和标准差对图像归一化;3)Resize调整图像尺寸;4)Compose组合多个变换操作。每种工具都通过代码示例展示了具体用法和效果,包括数据类型转换、数值缩放、尺寸调整等典型预处理步骤。这些操作能有效提升模型训练效果,是深度学习数据处理的重要工具。

2025-06-19 17:39:03 1038

原创 【深度学习】【入门】Tensorboard的使用

《Tensorboard入门指南摘要》 Tensorboard是TensorFlow的可视化工具,用于机器学习模型的可视化调试,支持损失曲线、计算图等展示。安装需在PyTorch环境中执行pip install tensorboard,启动命令为tensorboard --logdir=path_to_logs。基础使用通过SummaryWriter创建日志目录,用add_scalar()记录标量数据(如训练指标),完成后需关闭写入流。常见错误包括浏览器无法访问日志,需检查日志目录是否在根目录下,必要时调整

2025-06-16 23:29:17 467

原创 最新!!!Jupyter自动打开服务器,及在Pytorch中安装Jupyter

【摘要】本文解决Jupyter Notebook无法自动打开浏览器的问题,并提供PyTorch环境下的Jupyter安装指南。一、自动打开浏览器设置:1)生成配置文件;2)修改配置文件添加浏览器路径;3)启用open_browser选项。二、PyTorch安装Jupyter:1)激活PyTorch环境;2)安装nb_conda包;3)通过New选项选择PyTorch内核验证安装成功。操作需保持Anaconda Prompt运行,成功后会输出"True"。

2025-06-12 09:00:00 536

原创 多元学习,Pycharm(已经安装)如何新建编译环境!!!(增加Pytorch环境)(遇到找不到文件夹怎么处理)

本文介绍了在PyCharm中配置PyTorch深度学习环境的新方法。首先确保已安装Anaconda、CUDA和PyTorch。然后通过PyCharm新建项目时选择基础Conda环境,在加载完成后添加现有解释器,选择之前创建的PyTorch环境。最后通过运行简单的代码验证环境是否配置成功。文章还提到了旧方法可能失效的问题,并提供了详细的操作步骤和路径选择建议。

2025-06-11 11:15:50 520

原创 最新!!!Pytorch安装(为深度学习奠基)

PyTorch安装指南摘要:1)访问官网选择匹配CUDA版本的PyTorch,复制安装命令;2)在Anaconda Prompt中创建Python 3.9的虚拟环境(conda create -n pytorch),激活环境后粘贴安装命令;3)验证安装:在虚拟环境下运行import torch和torch.cuda.is_available(),返回True即成功。注意CUDA版本兼容性,推荐白天下载。

2025-06-10 16:31:23 330

原创 深度学习 CUDA的安装!!!(最新)

最新CUDA下载,为深度学习奠基

2025-06-09 21:18:49 470

原创 最新!!!安装Anaconda 3(保姆级)

Anaconda 3的安装,为学习奠基

2025-06-09 13:53:53 781

原创 geek,一款小巧便捷的删除软件(帮你解决空间焦虑)

此软件适用于程序附带文件的的情况(此软件可以帮助删除附带文件),可以帮助大家清理空间内存,提高运用效率

2025-06-09 11:40:35 397

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除