【学习笔记】动态规划—各种 DP 优化

【数据结构】动态规划(Dynamic Programming)-CSDN博客  https://blog.csdn.net/Hsianus/article/details/134802356?ops_request_misc=&request_id=&biz_id=102&utm_term=%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-1-134802356.142^v100^pc_search_result_base2&spm=1018.2226.3001.4187

【大前言】

个人认为贪心,dp�� 是最难的,每次遇到题完全不知道该怎么办,看了题解后又瞬间恍然大悟(TAT)。这篇文章也是花了我差不多一个月时间才全部完成。


【进入正题】

用动态规划解决问题具有空间耗费大时间效率高的特点,但也会有时间效率不能满足要求的时候,如果算法有可以优化的余地,就可以考虑时间效率的优化。


【DP 时间复杂度的分析】

DP�� 高时间效率的关键在于它减少了“冗余”,即不必要的计算或重复计算部分,算法的冗余程度是决定算法效率的关键。而动态规划就是在将问题规模不断缩小的同时,记录已经求解过的子问题的解,充分利用求解结果,避免了反复求解同一子问题的现象,从而减少“冗余”。
但是,一个动态规划问题很难做到完全消除“冗余”。

下面给出动态规划时间复杂度的决定因素:

时间复杂度 == 状态总数 ×× 每个状态转移的状态数 ×× 每次状态转移的时间


【DP 优化思路】

一:减少状态总数

(1).(1). 改进状态表示

(2).(2).选择适当的规划方向

二:减少每个状态转移的状态数

(1).(1). 四边形不等式和决策的单调性

(2).(2). 决策量的优化

(3).(3). 合理组织状态

(4).(4). 细化状态转移

三:减少状态转移的时间

(1).(1). 减少决策时间

(2).(2). 减少计算递推式的时间

(上述内容摘自 《动态规划算法的优化技巧》毛子青 ,想要深入了解其思想的可以去看看这篇写得超级好的论文。)


看到这里是不是已经感觉有点蒙了呢?
本蒟蒻总结了一个简化版本:


【DP 三要点】

在推导 dp�� 方程时,我们时常会感到毫无头绪,而实际上 dp�� 方程也是有迹可循的,总的来说,需要关注两个要点:状态决策转移。其中 “状态” 又最为关键,决策最为复杂。

【状态】

关于 “状态” 的优化可以从很多角度出发,思维难度及其高,有时候状态选择的好坏会直接导致出现暴零和满分的分化。

【决策】

与 “状态” 不同,“决策” 优化则有着大量模板化的东西,在各大书籍,文章上你都可以看到这样的话:只要是形如 XXX��� 的状态转移方程,都可以用 XXX��� 进行优化。

【转移】

“转移” 则指由最优决策点得到答案的转移过程,其复杂度一般较低,通常可以忽略,但有时也需要特别注意并作优化。

本文将会重点针对 “决策” 优化部分作一些总结,记录自己的感悟和理解。


QAQ���


一:【矩阵优化 DP】

updata������ 之后由于篇幅过大,已搬出。。。。。

【学习笔记】动态规划—矩阵递推加速

补充:其实质是优化 “转移”


QAQ���


二:【数据结构优化 DP】

【前言】

在一些 dp�� 方程的状态转移过程中,我们通常需要在某个范围内进行择优,选出最佳决策点,这往往可以作为 dp�� 优化的突破口。

数据结构的使用较灵活,没有一个特定的模板,需要根据具体情况而定,选择合适的方案。由于状态转移总是伴随着区间查询最值,区间求和等操作,即动态区间操作,所以平衡树可以作为一个有用的工具,但考虑到代码复杂度,使用树状数组或者线段树将会是一个不错的选择。。

其实质是优化 “决策”


1.【维护合适的信息】

以 The�ℎ� Battle������ of�� Chibi�ℎ��� [UVA12983][���12983] 为例,大概题意就是计算在给定的序列中严格单调递增子序列的数量,并对 1e9+71�9+7 取模,给定序列长度小于等于 10001000 。

方程应该是比较好推的,用 dp[i][j]��[�][�] 表示由序列中在 j� 之前的数构成并以 a[j]�[�] 结尾的子序列中,长度为 i� 的子序列的数量。则:dp[i][j]=∑dp[i−1][k]��[�][�]=∑��[�−1][�] ,其中 k<j�<� 且且 a[k]<a[j]�[�]<�[�] 。

对于决策点 dp[i−1][k]��[�−1][�] 这里出现了 33 个信息:
(1).(1). 在原序列中的位置 k<j�<� 。
(2).(2). a[k]<a[j]�[�]<�[�] 。
(3).(3). dp[i−1][k]��[�−1][�] 的和。

对于 (1)(1),可以用枚举的顺序解决,剩下的两个信息即是数据结构需要维护的信息。

对于每一次 dp[i]��[�] 的决策,可以将 a[j]�[�] 作为数据结构维护的关键字, dp[i−1][j]��[�−1][�] 作为权值,加入 −inf−��� 后离散化,得到一个大小为 N+1�+1 的数组并在上面建立树状数组,每次计算 dp[i][j]��[�][�] 时查询前面已经加入的且关键字小于 a[j]�[�] 的 dp[i−1][k]��[�−1][�] 总和(即区间查询),然后把 dp[i−1][j]��[�−1][�] 加入树状数组(单点查询)。

时间复杂度为 O(logn)�(����)。

当问题涉及到的操作更复杂时,树状数组无法维护所需要的信息,就只有用线段树了。这道题较简单,所以选择了代码复杂度更低的树状数组。


2.【Code】

#include<algorithm>
#include<cstring>
#include<cstdlib>//UVA抽风,加上这个就好了
#include<cstdio>
#define Re register int
using namespace std;//UVA抽风,还要加这个
const int N=1005,P=1e9+7;
int n,m,T,k,ans,cnt,a[N],b[N],C[N],dp[N][N];
inline void add(Re x,Re v){while(x<=n+1)(C[x]+=v)%=P,x+=x&-x;}
inline int ask(Re x){Re ans=0;while(x)(ans+=C[x])%=P,x-=x&-x;return ans%P;}
int main(){
    scanf("%d",&T);
    for(Re o=1;o<=T;++o){
        scanf("%d%d",&n,&m),ans=0,cnt=n;
        memset(dp,0,sizeof(dp));
        for(Re i=1;i<=n;++i)scanf("%d",&a[i]),b[i]=a[i],dp[1][i]=1;
        sort(b+1,b+n+1);//离散
        cnt=unique(b+1,b+n+1)-b-1;//去重
        for(Re i=2;i<=m;++i){
            memset(C,0,sizeof(C));//每次都要清空,重新开始维护
            for(Re j=1;j<=n;++j)
                dp[i][j]=ask((k=lower_bound(b+1,b+cnt+1,a[j])-b)-1),add(k,dp[i-1][j]);
        }	
        for(Re j=1;j<=n;++j)(ans+=dp[m][j])%=P;
        printf("Case #%d: %d\n",o,ans);
    }
}

3.【题目链接】

【简单题】
【高档题】

QAQ���


三:【决策单调性】

【前言】

形如 dp[i]=min(dp[j]+w(j,i))��[�]=���(��[�]+�(�,�)) (Li⩽j⩽Ri)(��⩽�⩽��) 的 dp�� 方程被称作 1D/1D1�/1� 动态规划,其中 Li�� 和 Ri�� 单调递增,w(j,i)�(�,�) 决定着优化策略选择。

针对决策点具有的特性,可以大大降低寻找最优决策点的时间。

其实质是优化 “决策”


1.【定义】

【决策单调性】

设 j0[i]�0[�] 表示 dp[i]��[�] 转移的最优决策点,那么决策单调性可描述为 ∀i⩽j,j0[i]⩽j0[j]∀�⩽�,�0[�]⩽�0[�]。也就是说随着 i� 的增大,所找到的最优决策点是递增态(非严格递增)。

【四边形不等式】

w(x,y)�(�,�) 为定义在整数集合上的一个二元函数,若 ∀a⩽b⩽c⩽d,w(a,c)+w(b,d)⩽w(a,d)+w(b,c)∀�⩽�⩽�⩽�,�(�,�)+�(�,�)⩽�(�,�)+�(�,�),那么函数 w� 满足四边形不等式

为什么叫做四边形不等式呢?在 w(x,y)�(�,�) 函数的二维矩阵中挖一块四边形,左上角 加 右下角 小于等于 左下角 加 右上角


2.【定理及其证明】

定理 (1):四边形不等式的另一种定义

w(x,y)�(�,�) 为定义在整数集合上的一个二元函数,若 ∀a<b,w(a,b)+w(a+1,b+1)⩽w(a+1,b)+w(a,b+1)∀�<�,�(�,�)+�(�+1,�+1)⩽�(�+1,�)+�(�,�+1),那么函数 w� 满足四边形不等式

证明:证明:

∵∀a<c,w(a,c)+w(a+1,c+1)⩽w(a+1,c)+w(a,c+1)∵∀�<�,�(�,�)+�(�+1,�+1)⩽�(�+1,�)+�(�,�+1)

∴∀a+1<c,w(a+1,c)+w(a+2,c+1)⩽w(a+2,c)+w(a+1,c+1)∴∀�+1<�,�(�+1,�)+�(�+2,�+1)⩽�(�+2,�)+�(�+1,�+1)

上下两式相加,有:上下两式相加,有: w(a,c)+w(a+2,c+1)⩽w(a,c+1)+w(a+2,c)�(�,�)+�(�+2,�+1)⩽�(�,�+1)+�(�+2,�)

以此类推以此类推 ∀a⩽b⩽c,w(a,c)+w(b,c+1)⩽w(a,c+1)+w(b,c)∀�⩽�⩽�,�(�,�)+�(�,�+1)⩽�(�,�+1)+�(�,�)

同理同理 ∀a⩽b⩽c⩽d,w(a,c)+w(b,d)⩽w(a,d)+w(b,c)∀�⩽�⩽�⩽�,�(�,�)+�(�,�)⩽�(�,�)+�(�,�)

定理 (2):决策单调性

1D/1D1�/1� 动态规划具有决策单调性当且仅当函数 w� 满足四边形不等式 时成立。

证明:证明:

∵∵ j0[i]�0[�] 在在 dp[i]��[�] 的决策点中最优的决策点中最优
∴∴ ∀i∈[1,N],∀j∈[0,j0[i]−1],dp[j0[i]]+w(j0[i],i)⩽dp[j]+w(j,i)∀�∈[1,�],∀�∈[0,�0[�]−1],��[�0[�]]+�(�0[�],�)⩽��[�]+�(�,�)

易知易知 ∀i′∈[i+1,N]∀�′∈[�+1,�],均满足均满足 j<j0[i]<i<i′�<�0[�]<�<�′。
又又 ∵∵ 函数函数 w� 满足四边形不等式满足四边形不等式
∴∴ w(j,i)+w(j0[i],i′)⩽w(j,i′)+w(j0[i],i)�(�,�)+�(�0[�],�′)⩽�(�,�′)+�(�0[�],�)

移项得:移项得: w(j0[i],i′)−w(j0[i],i)⩽w(j,i′)−w(j,i)�(�0[�],�′)−�(�0[�],�)⩽�(�,�′)−�(�,�)

与第一个式子相加,有:与第一个式子相加,有: dp[j0[i]]+w(j0[i],i′)⩽dp[j]+w(j,i′)��[�0[�]]+�(�0[�],�′)⩽��[�]+�(�,�′)

最后的式子含义是:把 j0[i]�0[�] 作为 dp[i′]��[�′] 的决策点,一定比小于 j0[i]�0[�] 的任意一个 j� 都要更好。也就是说,dp[i′]��[�′] 的最优决策点不可能小于 j0[i]�0[�] ,即 j0[i′]⩾j0[i]�0[�′]⩾�0[�],所以方程 dp�� 具有决策单调性


3.【证明决策单调性】

这里以 玩具装箱 toy��� [P3195][�3195] 为例(因为这个比较好证 QAQ),先来证一波决策单调性

设 S[n]=∑ni=1(C[i]+1)�[�]=∑�=1�(�[�]+1),用 dp[i]��[�] 表示装好前 i� 个的最小花费,则 dp�� 方程为:dp[i]=min(dp[j]+(S[i]−S[j]−1−L)2)��[�]=���(��[�]+(�[�]−�[�]−1−�)2)。

很明显,这个方程是一个 1D/1D1�/1� 动态规划方程,其中 w(i,j)=(S[i]−S[j]−1−L)2�(�,�)=(�[�]−�[�]−1−�)2。

(注意在四边形不等式中的 j� 不是 i� 决策点,可以理解为 i′�′。而 w(i,j)�(�,�) 的值可以理解为是由已完成的状态 dp[i]��[�] 转移到 dp[j]��[�] 所带有的附加价值)。

证明:设证明:设 Q=S[i]−S[j]−1−L�=�[�]−�[�]−1−�

∴w(i,j)=(S[i]−S[j]−1−L)2=Q2∴�(�,�)=(�[�]−�[�]−1−�)2=�2

证明:设证明:设 Q=S[i]−S[j]−1−L�=�[�]−�[�]−1−�

∴w(i,j)=(S[i]−S[j]−1−L)2=Q2∴�(�,�)=(�[�]−�[�]−1−�)2=�2

∴w(i+1,j+1)===(S[i+1]−S[j+1]−1−L)2((S[i]+C[i+1]+1)−(S[j]+C[j+1]+1)−1−L)2(Q+C[i+1]−C[j+1])2∴�(�+1,�+1)=(�[�+1]−�[�+1]−1−�)2=((�[�]+�[�+1]+1)−(�[�]+�[�+1]+1)−1−�)2=(�+�[�+1]−�[�+1])2

w(i,j+1)===(S[i]−S[j+1]−1−L)2(S[i]−(S[j]+C[j+1]+1)−1−L)2(Q−C[j+1]−1)2�(�,�+1)=(�[�]−�[�+1]−1−�)2=(�[�]−(�[�]+�[�+1]+1)−1−�)2=(�−�[�+1]−1)2

w(i+1,j)===(S[i+1]−S[j]−1−L)2((S[i]+C[i+1]+1)−S[j]−1−L)2(Q+C[i+1]+1)2�(�+1,�)=(�[�+1]−�[�]−1−�)2=((�[�]+�[�+1]+1)−�[�]−1−�)2=(�+�[�+1]+1)2

∴w(i,j)+w(i+1,j+1)=2X2+2C[i+1]X−2C[j+1]X+C[i+1]2−2C[i+1]C[j+1]+C[j+1]2∴�(�,�)+�(�+1,�+1)=2�2+2�[�+1]�−2�[�+1]�+�[�+1]2−2�[�+1]�[�+1]+�[�+1]2

∴w(i+1,j)+w(i,j+1)=2X2+2C[i+1]X−2C[j+1]X+C[i+1]2+2C[i+1]+2C[j+1]+C[j+1]2+2∴�(�+1,�)+�(�,�+1)=2�2+2�[�+1]�−2�[�+1]�+�[�+1]2+2�[�+1]+2�[�+1]+�[�+1]2+2

∴w(i,j)+w(i+1,j+1)−w(i+1,j)+w(i,j+1)=−2(C[i+1]+1)(C[j+1]+1)∴�(�,�)+�(�+1,�+1)−�(�+1,�)+�(�,�+1)=−2(�[�+1]+1)(�[�+1]+1)

又∵C[i],C[j]⩾1又∵�[�],�[�]⩾1

∴−2(C[i+1]+1)(C[j+1]+1)⩽−8∴−2(�[�+1]+1)(�[�+1]+1)⩽−8

∴w(i,j)+w(i+1,j+1)⩽w(i+1,j)+w(i,j+1)∴�(�,�)+�(�+1,�+1)⩽�(�+1,�)+�(�,�+1)

∴w(i,j)+w(i+1,j+1)=2X2+2C[i+1]X−2C[j+1]X+C[i+1]2−2C[i+1]C[j+1]+C[j+1]2∴�(�,�)+�(�+1,�+1)=2�2+2�[�+1]�−2�[�+1]�+�[�+1]2−2�[�+1]�[�+1]+�[�+1]2

∴w(i+1,j)+w(i,j+1)=2X2+2C[i+1]X−2C[j+1]X+C[i+1]2+2C[i+1]+2C[j+1]+C[j+1]2+2∴�(�+1,�)+�(�,�+1)=2�2+2�[�+1]�−2�[�+1]�+�[�+1]2+2�[�+1]+2�[�+1]+�[�+1]2+2

∴w(i,j)+w(i+1,j+1)−w(i+1,j)+w(i,j+1)=−2(C[i+1]+1)(C[j+1]+1)∴�(�,�)+�(�+1,�+1)−�(�+1,�)+�(�,�+1)=−2(�[�+1]+1)(�[�+1]+1)

又∵C[i],C[j]⩾1又∵�[�],�[�]⩾1

∴−2(C[i+1]+1)(C[j+1]+1)⩽−8∴−2(�[�+1]+1)(�[�+1]+1)⩽−8

∴w(i,j)+w(i+1,j+1)⩽w(i+1,j)+w(i,j+1)∴�(�,�)+�(�+1,�+1)⩽�(�+1,�)+�(�,�+1)

由定理 (1)(1) 可知,函数 w� 满足四边形不等式
又由定理 (2)(2)可知, 方程 dp�� 具有决策单调性

在实战中,通常使用打表的形式来验证 w� 函数的递变规律。


4.【实现方法】

(ps.��. 对于此处及以下语言不严谨处,大家可以认真思考并给予建议,待日后对其理解加深后再行修改。)

这里选择不同的例题将二者分开讲。

【二分栈】

二分栈,顾名思义就是二分加栈。

用栈维护单调的决策点,二分找到最优决策点。

以 Lightning���ℎ����� Conductor��������� [P3515][�3515] 为例,题目大意就是在给定长度为 n� 的序列 a� 中,对于每一个 i�,找到最小的自然数 pi�� 满足对于任意的 j∈[1,n]�∈[1,�],均有 aj⩽ai+pi−|i−j|−−−−−√��⩽��+��−|�−�| 。

把这个式子变下形:pi⩾aj−ai+|i−j|−−−−−√��⩾��−��+|�−�| 。
即 pi=max{aj+|i−j|−−−−−√}−ai��=���{��+|�−�|}−��
即 pi=max{max{aj+i−j−−−−√}(j∈[1,i]),max{aj+j−i−−−−√}(j∈[i+1,n])}−ai��=���{���{��+�−�}(�∈[1,�]),���{��+�−�}(�∈[�+1,�])}−��

可以发现里面两个 max��� 可以视为同一个问题(只要把序列翻转一下就可以了),所以只需要考虑求出对于每一个 i� 的 max{aj+i−j−−−−√}���{��+�−�},其中 j∈[1,i]�∈[1,�]。

设 yj=aj+i−j−−−−√��=��+�−�

那么我们会得到 n� 个关于 i� 函数,pi=max{yj}��=���{��}。

将样例画出来,如图:

可知当 i=4�=4 时,直线 x=4�=4 与 y1=a1+x−1−−−−−√�1=�1+�−1 的交点即为 p4�4。

在上图中,对于任意 j∈[1,n]�∈[1,�] ,y1�1 总是在最上面,也就是说下面的其他函数可以踢掉不要,但由于 sqrt���� 函数的增速递减,会出现如图中 y2,y4�2,�4 的情况,即存在一个交点使得在该点两边时两条直线的位置关系不同。此时如果没有上面的 y1�1,y2,y4�2,�4 都有可能成为答案,所以不能乱踢。

看下面这种情况:

设 k1�1 为 y1,y2�1,�2 的交点,k2�2 为 y2,y3�2,�3 的交点。
此时 k1>k2�1>�2,可以发现 y2�2 始终在其他直线的下面,可以放心的将其踢掉。

所以维护出来的决策集合大概就是酱紫的:

对于不同的 i� 来说,都有一个互不不同的直线在最上方,所以该决策集合里的直线都是有用的。可以从图中看出,最优决策点单调递增(决策单调性的数学证明较麻烦,本人能力不足,不作探讨)。

维护决策集合用单调队列,查找直线交点用二分,随便搞搞就行了。

时间复杂度为 O(nlogn)�(�����)。

【分治】

为方便描述,用 dp[a,b]��[�,�] 表示 dp[a],dp[a+1],dp[a+2]...dp[b]��[�],��[�+1],��[�+2]...��[�]。

假设我们已知 dp[l,r]��[�,�] 的最优决策点均位于 [L,R][�,�],再设 dp[mid]��[���] 的最优决策点为 j0�0,其中 mid=(l+r)/2���=(�+�)/2。根据决策单调性的定义可知:
dp[l,mid−1]��[�,���−1] 的最优决策点位于 [L,k][�,�],
dp[mid+1,r]��[���+1,�] 的最优决策点位于 [k,R][�,�]。
原问题变成了两个规模更小的同类型问题,所以可以用分治来对 dp�� 进行优化。

分治的话理解和代码都要简单一些,但在某些情况下可能要被卡,时间复杂度会严重退化,所以还是二分栈的实用性更高。

还是以 Lightning���ℎ����� Conductor��������� [P3515][�3515] 为例,每次的分治中先暴力扫一遍找到 p[mid=(l+r)/2]�[���=(�+�)/2] 的最优决策点 j0�0,然后做一下左边,再做一下右边,然后 ...... 然后 ...... 就没了。

时间复杂度为 O(nlogn)�(�����)。


5.【Code】

二分栈
#include<algorithm>
#include<cstdio>
#include<cmath>
#define Re register int
using namespace std;
const int N=5e5+3;
int i,j,n,h,t,a[N],Q[N],Poi[N];
double p[N],sqr[N];
inline void in(Re &x){
    int f=0;x=0;char c=getchar();
    while(c<'0'||c>'9')f|=c=='-',c=getchar();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x=f?-x:x;
}
inline double Y(Re i,Re j){return a[j]+sqr[i-j];}
inline int find_Poi(int j1,int j2){//找到两个直线的交点i 
    Re l=j2,r=n,mid,ans=n+1;//为了处理两个直线没有交点的情况,用一个变量记录答案
    while(l<=r){
        mid=l+r>>1;
        if(Y(mid,j1)<=Y(mid,j2))ans=mid,r=mid-1;
//当前这个位置i使得直线j1的纵坐标小于直线j2的纵坐标,说明这个点i在交点的右方,所以右边界要缩小
        else l=mid+1;
    }
    return ans;
}
inline void sakura(){
    h=1,t=0;
    for(i=1;i<=n;++i){//由于i本身也是一个决策点,所以要先入队再取答案择优
    	while(h<t&&Poi[t-1]>=find_Poi(Q[t],i))--t;//如果出现了上述可踢的情况,出队
    	Poi[t]=find_Poi(Q[t],i),Q[++t]=i;
    	while(h<t&&Poi[h]<=i)++h;
//找到第一个位置j使得直线Q[j]与直线Q[j+1]的交点大于i,
//那么直线Q[j]就是i前面在最上面的直线,即答案,自己画个图模拟一下就懂了
    	p[i]=max(p[i],Y(i,Q[h]));
    }
}
int main(){
    in(n);
    for(Re i=1;i<=n;++i)in(a[i]),sqr[i]=sqrt(i);
    sakura();
    for(Re i=1;i<n-i+1;++i)swap(a[i],a[n-i+1]),swap(p[i],p[n-i+1]);
    sakura();
    for(Re i=n;i;--i)printf("%d\n",(int)ceil(p[i])-a[i]);
}
分治
#include<algorithm>
#include<cstdio>
#include<cmath>
#define Re register int
using namespace std;
const int N=5e5+3;
int i,j,n,h,t,a[N],Q[N],Poi[N];
double tmp,p[N],sqr[N];
inline void in(Re &x){
    int f=0;x=0;char c=getchar();
    while(c<'0'||c>'9')f|=c=='-',c=getchar();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x=f?-x:x;
}
inline void sakura(Re l,Re r,Re L,Re R){
    if(l>r)return;
    Re mid=l+r>>1,j0;double mx=0;
    for(Re j=L;j<=mid&&j<=R;++j)
    //暴力找p[i]的最优决策点j0,而其决策点j必须满足j<=i,即此处的j<=mid
    	if((tmp=a[j]+sqr[mid-j])>mx)mx=tmp,j0=j;
    p[mid]=max(p[mid],mx);
    sakura(l,mid-1,L,j0),sakura(mid+1,r,j0,R);
}
int main(){
    in(n);
    for(Re i=1;i<=n;++i)in(a[i]),sqr[i]=sqrt(i);
    sakura(1,n,1,n);
    for(Re i=1;i<n-i+1;++i)swap(a[i],a[n-i+1]),swap(p[i],p[n-i+1]);
    sakura(1,n,1,n);
    for(Re i=n;i;--i)printf("%d\n",(int)ceil(p[i])-a[i]);
}

6.【题目链接】

【中档题】
【高档题】

QAQ���


四:【单调队列优化 DP】


【前言】

形如 dp[i]=max/min{dp[j]+funtion(i)+function(j)}��[�]=���/���{��[�]+�������(�)+��������(�)} 的 dp�� 方程均可尝试使用单调队列优化。

单调栈单调队列给我们展现出了一种思想:在保证正确性的前提下,及时排除不可能的决策点,保持决策集合内部的有序性和查找决策的高效性。之前的二分栈,此处的单调队列优化,和后面的斜率优化都是以此为核心来运作的。

其实质是优化 “决策”


1.【单调队列的简单运用】

【T1】

琪露诺 [P1725][�1725](盗版滑动窗口QAQ)。

【题目大意】

在给定序列中找出一条路径使其经过的点之和最大,且每次可走的距离在给定区间 [l,r][�,�] 以内。

【分析】

方程非常简单:dp[i]=max{dp[j]+a[i]}(i−r⩽j⩽i−l)��[�]=���{��[�]+�[�]}(�−�⩽�⩽�−�) 。

在某一次决策中,由于决策点 j� 只可能在 [i−l,i−r][�−�,�−�] 这一段区间内,可以只将这些点放入决策集合。
而 l,r�,� 是定值,当 i� 不断增大时,之前小于 i−l�−� 的 j� 现在还是小于 i−l�−�,所以可以永远地踢掉。
若 j<j′�<�′ 且 dp[j]⩽dp[j′]��[�]⩽��[�′],那么 dp[j]��[�] 也可以永远地踢掉。为什么呢? j� 在 j′�′ 的前面,一定会先成为不合法决策点,而 j� 的价值又比 j′�′ 小,因此留下来只是浪费扫描的时间。

最终维护出了一个价值递减的单调队列。

【Code】
#include<algorithm>
#include<cstring>
#include<cstdio>
#define Re register int
using std::max;
const int N=2e5+3;
int n,l,r,h=1,t,a[N],Q[N];
long long ans=-2e9,dp[N]; 
inline void in(Re &x){
    int f=0;x=0;char c=getchar();
    while(c<'0'||c>'9')f|=c=='-',c=getchar();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x=f?-x:x;
}
int main(){
    in(n),in(l),in(r);
    memset(dp,-127,sizeof(dp));
    Q[++t]=0;
    for(Re i=0;i<=n;++i)in(a[i]);
    dp[0]=a[0];
    for(Re i=l;i<=n;i++){//注意枚举起点是l不是1
    	while(h<=t&&dp[Q[t]]<=dp[i-l])--t;//维护单调递减
    	Q[++t]=i-l;//入队
    	while(h<=t&&Q[h]<i-r)++h;//保证决策点合法
    	dp[i]=dp[Q[h]]+a[i];//取出最优决策点
    	if(i>n-r)ans=max(ans,dp[i]);
    }
    printf("%lld",ans);
}
【T2】

fence����� [POJ1821][���1821]

【题目大意】

M� 个工人要对 N� 块木板进行粉刷。工人 i� 要么不刷,要么就刷不超过 Li�� 块并且包含 Si�� 的连续一段木板,每粉刷一块木板有 Pi�� 的报酬。要求使总报酬最大。

【分析】

Si�� 的散乱分布非常讨厌,所以先把工人按 Si�� 排个序。

主要信息有“工人序号”,“木板序号”,“报酬”这三个,而其中“报酬”为所求答案,可以用 dp[i][j]��[�][�] 表示前 i� 个工人刷完前 j� 块木板所得总报酬。

考虑状态转移:
第 i� 个工人可以跳过不刷木板,也可以跳过第 j� 块木板不刷,因此先在 dp[i−1][j]��[�−1][�] 和 dp[i][j−1]��[�][�−1] 当中取个最大值。
工人 i� 想要粉刷的区间 [k+1,j][�+1,�] 必须包括 Si��,并且区间长度要小于等于 Li��。
所以得出 dp�� 转移方程:dp[i][j]=max{dp[i−1][j],dp[i][j−1],dp[i−1][k]+Pi∗(j−k)}��[�][�]=���{��[�−1][�],��[�][�−1],��[�−1][�]+��∗(�−�)},其中 Si⩽j��⩽� 且 k∈[j−Li,Si−1]�∈[�−��,��−1]。

k� 为决策点,Pi∗j��∗� 为定值可以单独提出来,所以实际上就是上面琪露诺 [P1725][�1725]一样的类型,只是加了一维而已。

最终维护出了一个 dp[i−1][k]−Pi∗k��[�−1][�]−��∗� 递减的单调队列。

【Code】
#include<algorithm>
#include<cstring>
#include<cstdio>
#define Re register int
using namespace std;
const int N=16005;
struct QAQ{int L,P,S;}a[105];
int n,m,i,j,k,Q[N],W[N],dp[105][N];
inline bool cmp(QAQ a,QAQ b){return a.S<b.S;}
int main(){
    while(scanf("%d%d",&n,&m)!=EOF){
    	memset(dp,0,sizeof(dp));
    	memset(a,0,sizeof(a));
    	for(i=1;i<=m;++i)scanf("%d%d%d",&a[i].L,&a[i].P,&a[i].S);
    	std::sort(a+1,a+m+1,cmp);
    	for(i=1;i<=m;++i){
            Re l=1,r=0,tmp,Si=a[i].S,Li=a[i].L,Pi=a[i].P;
            for(k=max(0,Si-Li);k<Si;++k){
            //k+1为工人i开始刷的位置,max(1,Si-Li+1)<=k+1<=Si
            	tmp=dp[i-1][k]-Pi*k;
            	while(l<=r&&Q[r]<=tmp)--r;
            	Q[++r]=tmp,W[r]=k;
            }
            for(j=1;j<=n;++j){
            	dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
                if(Si+Li>j&&j>=Si){//Si+Li-1>=j>=Si
                    while(l<=r&&W[l]+Li<j)++l;//W[r]+1+Li-1<j
                    if(l<=r)dp[i][j]=max(dp[i][j],Q[l]+Pi*j);
                }
            }
    	}
    	printf("%d\n",dp[m][n]);
    }
}

2.【单调队列优化多重背包】

先来回顾一下多重背包问题。

用 v,w,c�,�,� 分别表示物品重量,价值,数量,n� 为物品数量,V� 为背包容量。dp�� 方程为:dp[j]=max{dp[j−k∗v[i]]+k∗w[i]}��[�]=���{��[�−�∗�[�]]+�∗�[�]} (j∈[v[i],V],(�∈[�[�],�], k∈[1,min(c[i],j/v[i])])�∈[1,���(�[�],�/�[�])])

还可以用二进制拆分来进行优化,但就是有这样一道题,连 log��� 都要卡:多重背包 [CodeVS5429][������5429]。所以还需要考虑更高效的算法。

但说来说去似乎都和单调队列扯不上关系。

为何?

观察 dp[j]��[�] 和 dp[j−1]��[�−1] 决策集合:
dp[j]:{j%v[i]...j−2∗v[i],j−v[i]}��[�]:{�%�[�]...�−2∗�[�],�−�[�]}
dp[j−1]:{(j−1)%v[i]...(j−1)−2∗v[i],(j−1)−v[i]}��[�−1]:{(�−1)%�[�]...(�−1)−2∗�[�],(�−1)−�[�]}

dp[j]��[�] 的每一个决策点都与 dp[j−1]��[�−1] 不同,很难根据 dp[j−1]��[�−1] 的决策集合转移成 dp[j]��[�] 的决策集合。

再看 dp[j]��[�] 和 dp[j−v[i]]��[�−�[�]]:

dp[j]:{j−c[i]∗v[i]...j−2v[i],j−v[i]}��[�]:{�−�[�]∗�[�]...�−2�[�],�−�[�]}

dp[j−v[i]]:{j−(c[i]+1)∗v[i]...j−3v[i],j−2v[i]}��[�−�[�]]:{�−(�[�]+1)∗�[�]...�−3�[�],�−2�[�]}

可以发现上面只是比下面的区别仅仅在于 j−(c[i]+1)∗v[i]�−(�[�]+1)∗�[�] 和 j−v[i]�−�[�] ,恰好满足单调队列的一个特性:但有新的决策出现时,决策点集合中会去掉一部分不合法的,再加上一部分新来的。

所以我们可以按照 j� 的余数来分一下:

dp[j](j%v[i]=0):{0,v[i],2v[i]...j−2v[i],j−v[i]}��[�](�%�[�]=0):{0,�[�],2�[�]...�−2�[�],�−�[�]}
dp[j](j%v[i]=1):{1,v[i]+1,2v[i]+1...j−2v[i],j−v[i]}��[�](�%�[�]=1):{1,�[�]+1,2�[�]+1...�−2�[�],�−�[�]}
......
dp[j](j%v[i]=v[i]−1):{v[i]−1,2v[i]−1...j−2v[i],j−v[i]}��[�](�%�[�]=�[�]−1):{�[�]−1,2�[�]−1...�−2�[�],�−�[�]}

设 j=p∗v[i]+r�=�∗�[�]+�,那么原方程可改为: dp[p∗v[i]+r]=max{dp[r+k∗v[i]]+(p−k)∗w[i]}��[�∗�[�]+�]=���{��[�+�∗�[�]]+(�−�)∗�[�]} (r∈[0,v[i]−1],(�∈[0,�[�]−1], p∈[1,⌊(V−r)/v[i]⌋],�∈[1,⌊(�−�)/�[�]⌋], k∈[p−min(⌊V/w[i]⌋,c[i]),p])�∈[�−���(⌊�/�[�]⌋,�[�]),�])
只要在最外层将 i,r,p�,�,� 都枚举出来,这就是一个标准的单调队列可优化方程,用类似 fence����� [POJ1821][���1821] 的方法维护即可。

时间复杂度为 O(N∗V)�(�∗�) 。

【Code】
#include<cstdio>
#define Re register int
const int N=7003,M=7003;
int n,h,t,V,mp,tmp,v[N],w[N],c[N],Q[N],K[N],dp[M];
inline void in(Re &x){
    Re fu=0;x=0;char ch=getchar();
    while(ch<'0'||ch>'9')fu|=ch=='-',ch=getchar();
    while(ch>='0'&&ch<='9')x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
    x=fu?-x:x;
}
inline int max(Re a,Re b){return a>b?a:b;}
inline int min(Re a,Re b){return a<b?a:b;}
int main(){
    in(n),in(V);
    for(Re i=1;i<=n;++i)in(v[i]),in(w[i]),in(c[i]);
    for(Re i=1;i<=n;++i)
    	for(Re r=0;r<v[i];++r){
            h=1,t=0,mp=(V-r)/v[i];
            for(Re p=0;p<=mp;++p){
            	tmp=dp[p*v[i]+r]-w[i]*p;
            	while(h<=t&&Q[t]<=tmp)--t;
            	Q[++t]=tmp,K[t]=p;
            	while(h<=t&&p-K[h]>min(c[i],V/v[i]))++h;
            	dp[p*v[i]+r]=max(dp[p*v[i]+r],Q[h]+p*w[i]);
            }
        }
    printf("%d",dp[V]);
}
  • 13
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值