一、INR是什么?有啥优势?
INR是一种借助神经网络对数据进行参数化的技术,通过神经网络学习对象数据的隐含特征,无需显式表示对象的几何结构。简单来说,它就像是给数据找到了一种更“聪明”的表达方式。
INR的优势相当显著。其一,它与分辨率无关,能够在连续域中运行,生成像素或体素网格之间的坐标值,这在处理不同分辨率的医学影像时极为方便。其二,内存效率高,存储信号的内存需求不受分辨率限制,根据信号复杂程度调整内存占用,不像传统方法那样受限于分辨率。其三,能有效减轻局部性偏差,这是卷积神经网络(CNN)难以做到的。其四,它具有可微性,权重可以利用基于梯度的技术灵活调整,以适应各种不同的任务。
二、INR在医学领域大显身手
医学领域对数据标注和内存资源有着严格要求,INR的出现为解决这些难题带来了希望。
在图像重建方面,它把医学图像重建当作逆问题处理,输入噪声或欠采样的测量数据,输出完整的重建图像。像NeRP框架,借助先验知识编码神经网络权重,在稀疏采样数据上优化网络,最终重建出高质量的CT和MRI图像,还能有效展示肿瘤结构的变化。DCTR则专注于动态场景重建,通过INR估计模板,结合运动场参数和Radon变换,成功实现对动态器官的精准重建。
医学图像分割中,INR也发挥着重要作用。BS - ISR方法将CNN和INR相结合,利用样条表示精准捕获几何边界,配合新的损失函数,在先天性心脏病数据集上表现出色。Retinal INR方法运用视觉变换器(ViT)和自蒸馏技术,有效提升视网膜图像分辨率,清晰分割出血管,助力眼部疾病的诊断。
医学图像配准任务里,INR无需外部假设就能对变换函数建模。IDIR使用基于SIREN的变形配准设计,通过MLP预测变形向量,实现图像的精准对齐。mirnf则能对位移和速度矢量场进行建模,提供两种配准方法,在脑部扫描数据集上展现出卓越的性能。
生物医学数据压缩一直是个难题,INR为此提供了新的解决方案。SCI通过自适应分区和特定的神经网络结构压缩数据,在HiP - CT数据集上超越了传统压缩技术。TINC采用树结构和参数共享机制,提升了压缩效率,不过压缩速度还有待进一步提高。
神经渲染中,INR能够创建更详细、准确的医学数据可视化效果。MedNeRF结合GRAF,有效缓解了患者在3D CT成像中辐射暴露的问题,提升了体积深度估计的准确性。手术神经渲染技术通过捕获手术场景的动态变化,助力机器人手术更加精准地进行。
三、现存挑战与未来发展方向
尽管INR在医学影像领域成绩斐然,但仍面临诸多挑战。计算复杂性和训练时间过长是较为突出的问题,学习高维数据的神经表示需要消耗大量内存和计算资源,训练耗时严重影响实时应用,不过元学习和多尺度表示技术有望改善这一状况。
表示复杂信号同样困难重重,高分辨率信号和复杂3D形状的映射高度非线性,扩展时计算成本极高,研究人员必须在模型复杂性和计算资源之间找到平衡。
基于视频的INR在视频压缩解码方面优势明显,但对高频视频帧间语义关系的建模还存在较大挑战,需要持续深入研究。
展望未来,INR在医学影像领域的发展前景十分广阔。随着技术的不断进步,它有望在多模态成像、实时和交互式系统集成以及临床决策支持等领域取得重大突破,为医学研究和临床实践带来更多便利和创新。