2019最新Android算法相关面试大全,请查收

#####5.2折半查找

折半查找要求线性表是有序表。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为O(log n)。

  • 可以借助二叉判定树求得折半查找的平均查找长度log2(n+1)-1
  • 折半查找在失败时所需比较的关键字个数不超过判定树的深度,n个元素的判定树的深度和n个元素的完全二叉树的深度相同log2(n)+1

public int binarySearchStandard(int[] num, int target){
int start = 0;
int end = num.length - 1;
while(start <= end){ //注意1
int mid = start + ((end - start) >> 1);
if(num[mid] == target)
return mid;
else if(num[mid] > target){
end = mid - 1; //注意2
}
else{
start = mid + 1; //注意3
}
}
return -1;
}

  • 如果是start < end,那么当target等于num[num.length-1]时,会找不到该值。

  • 因为num[mid] > target, 所以如果有num[index] == target, index一定小于mid,能不能写成end = mid呢?举例来说:num = {1, 2, 5, 7, 9}; 如果写成end = mid,当循环到start = 0, end = 0时(即num[start] = 1, num[end] = 1时),mid将永远等于0,此时end也将永远等于0,陷入死循环。也就是说寻找target = -2时,程序将死循环。

  • 因为num[mid] < target, 所以如果有num[index] == target, index一定大于mid,能不能写成start = mid呢?举例来说:num = {1, 2, 5, 7, 9}; 如果写成start = mid,当循环到start = 3, end = 4时(即num[start] = 7, num[end] = 9时),mid将永远等于3,此时start也将永远等于3,陷入死循环。也就是说寻找target = 9时,程序将死循环。

#####5.3分块查找

分块查找又称索引顺序查找,它是一种性能介于顺序查找和折半查找之间的查找方法。分块查找由于只要求索引表是有序的,对块内节点没有排序要求,因此特别适合于节点动态变化的情况

###六.排序算法

#####6.1常见排序算法

######稳定排序:

  • 冒泡排序 — O(n²)
  • 插入排序 — O(n²)
  • 桶排序 — O(n); 需要 O(k) 额外空间
  • 归并排序 — O(nlogn); 需要 O(n) 额外空间
  • 二叉排序树排序 — O(n log n) 期望时间; O(n²)最坏时间; 需要 O(n) 额外空间
  • 基数排序 — O(n·k); 需要 O(n) 额外空间

######不稳定排序

  • 选择排序 — O(n²)
  • 希尔排序 — O(nlogn)
  • 堆排序 — O(nlogn)
  • 快速排序 — O(nlogn) 期望时间, O(n²) 最坏情况; 对于大的、乱数串行一般相信是最快的已知排序

#####6.2交换排序

######冒泡排序

它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。冒泡排序总的平均时间复杂度为O(n^2)。冒泡排序是一种稳定排序算法。

  • 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
  • 针对所有的元素重复以上的步骤,除了最后一个。
  • 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

void bubble_sort(int a[], int n)
{
int i, j, temp;
for (j = 0; j < n - 1; j++)
for (i = 0; i < n - 1 - j; i++)
{
if(a[i] > a[i + 1])
{
temp = a[i];
a[i] = a[i + 1];
a[i + 1] = temp;
}
}
}

6.3快速排序 快速排序-百度百科

快速排序是一种 不稳定 的排序算法,平均时间复杂度为 O(nlogn)快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists)。 步骤为:

  • 从数列中挑出一个元素,称为"基准"(pivot),
  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

快排的时间花费主要在划分上,所以

  • 最坏情况:时间复杂度为O(n^2)。因为最坏情况发生在每次划分过程产生的两个区间分别包含n-1个元素和1个元素的时候。
  • 最好情况:每次划分选取的基准都是当前无序区的中值。如果每次划分过程产生的区间大小都为n/2,则快速排序法运行就快得多了。

public void sort(int[] arr, int low, int high) {
int l = low;
int h = high;
int povit = arr[low];

while (l < h) {
while (l < h && arr[h] >= povit)
h–;
if (l < h) {
arr[l] = arr[h];
l++;
}

while (l < h && arr[l] <= povit)
l++;

if (l < h) {
arr[h] = arr[l];
h–;
}
}

arr[l] = povit;

System.out.print(“l=” + (l + 1) + “;h=” + (h + 1) + “;povit=” + povit + “\n”);
System.out.println(Arrays.toString(arr));
if (l - 1 > low) sort(arr, low, l - 1);
if (h + 1 < high) sort(arr, h + 1, high);
}

######快排的优化

  1. 当待排序序列的长度分割到一定大小后,使用插入排序。
  2. 快排函数在函数尾部有两次递归操作,我们可以对其使用尾递归优化。优化后,可以缩减堆栈深度,由原来的O(n)缩减为O(logn),将会提高性能。
  3. 从左、中、右三个数中取中间值。

#####6.4插入排序

直接插入排序

插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。 插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。

void insert_sort(int* a, int len) {
for (int i = 1; i < len; ++i) {
int j = i - 1;
int temp = a[i];
while (j >= 0 && temp < a[j]) {
a[j + 1] = a[j];
j–;
}
a[j + 1] = temp;
}
}

######希尔排序
也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。

希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

void shell_sort(int* a, int len) {
int step = len / 2;
int temp;

while (step > 0) {
for (int i = step; i < len; ++i) {
temp = a[i];
int j = i - step;
while (j >= 0 && temp < a[j]) {
a[j + step] = a[j];
j -= step;
}
a[j + step] = temp;
}
step /= 2;
}
}

#####6.5选择排序

######直接选择排序

首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。实际适用的场合非常罕见。

void selection_sort(int arr[], int len) {
int i, j, min, temp;
for (i = 0; i < len - 1; i++) {
min = i;
for (j = i + 1; j < len; j++)
if (arr[min] > arr[j])
min = j;
temp = arr[min];
arr[min] = arr[i];
arr[i] = temp;
}
}

#####6.6堆排序

堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。

  1. 将数组分为有序区和无序区,在无序区中建立最大堆
  2. 将堆顶的数据与无序区末尾的数据交换
  3. 从后往前,直到所有数据排序完成

public void heapSort(int[] nums) {
for (int i = nums.length - 1; i >= 0; i–) {
maxHeap(nums, 0, i);

swap(nums, 0, i);
}
}

public void maxHeap(int[] heap, int start, int end) {
if (start == end) {
return;
}

int parent = start;
int childLeft = start * 2 + 1;
int childRight = childLeft + 1;

if (childLeft <= end) {
maxHeap(heap, childLeft, end);

if (heap[childLeft] > heap[parent]) {
swap(heap, parent, childLeft);
}
}

if (childRight <= end) {
maxHeap(heap, childRight, end);

if (heap[childRight] > heap[parent]) {
swap(heap, parent, childRight);
}
}
}

private void swap(int[] nums, int a, int b) {
int t = nums[a];
nums[a] = nums[b];
nums[b] = t;
}

#####6.7归并排序

归并排序采用分治的思想:

  • Divide:将n个元素平均划分为各含n/2个元素的子序列;
  • Conquer:递归的解决俩个规模为n/2的子问题;
  • Combine:合并俩个已排序的子序列。

性能:时间复杂度总是为O(NlogN),空间复杂度也总为为O(N),算法与初始序列无关,排序是稳定的。

public void mergeSort(int[] array, int start, int end, int[] temp) {
if (start >= end) {
return;
}

int mid = (start + end) / 2;

mergeSort(array, start, mid, temp);
mergeSort(array, mid + 1, end, temp);

int f = start, s = mid + 1;
int t = 0;
while (f <= mid && s <= end) {
if (array[f] < array[s]) {
temp[t++] = array[f++];
} else {
temp[t++] = array[s++];
}
}

while (f <= mid) {
temp[t++] = array[f++];
}

while (s <= end) {
temp[t++] = array[s++];
}

for (int i = 0, j = start; i < t; i++) {
array[j++] = temp[i];
}
}

#####6.8基数排序

对于有d个关键字时,可以分别按关键字进行排序。有俩种方法:

  • MSD:先从高位开始进行排序,在每个关键字上,可采用基数排序
  • LSD:先从低位开始进行排序,在每个关键字上,可采用桶排序

即通过每个数的每位数字的大小来比较

//找出最大数字的位数
int maxNum(int arr[], int len) {
int _max = 0;

for (int i = 0; i < len; ++i) {
int d = 0;
int a = arr[i];

while (a) {
a /= 10;
d++;
}

if (_max < d) {
_max = d;
}
}
return _max;
}

void radixSort(int *arr, int len) {
int d = maxNum(arr, len);
int *temp = new int[len];
int count[10];
int radix = 1;

for (int i = 0; i < d; ++i) {
for (int j = 0; j < 10; ++j) {
count[j] = 0;
}

for (int k = 0; k < len; ++k) {
count[(arr[k] / radix) % 10]++;
}

for (int l = 1; l < 10; ++l) {
count[l] += count[l - 1];
}

for (int m = 0; m < len; ++m) {
int index = (arr[m] / radix) % 10;
temp[count[index] - 1] = arr[m];
count[index]–;
}

for (int n = 0; n < len; ++n) {
arr[n] = temp[n];
}
radix *= 10;

}

delete (temp);
}

#####6.9拓扑排序

在有向图中找拓扑序列的过程,就是拓扑排序。拓扑序列常常用于判定图是否有环

  • 从有向图中选择一个入度为0的结点,输出它。
  • 将这个结点以及该结点出发的所有边从图中删除。
  • 重复前两步,直到没有入度为0的点。

如果所有点都被输出,即存在一个拓扑序列,则图没有环。

###七.跳跃表

跳跃列表是一种数据结构。它允许快速查询一个有序连续元素的数据链表。跳跃列表的平均查找和插入时间复杂度都是 O(log n) ,优于普通队列的 O(n)

快速查询是通过维护一个多层次的链表,且每一层链表中的元素是前一层链表元素的子集。一开始时,算法在最稀疏的层次进行搜索,直至需要查找的元素在该层两个相邻的元素中间。这时,算法将跳转到下一个层次,重复刚才的搜索,直到找到需要查找的元素为止。跳过的元素的方法可以是 随机性选择 或 确定性选择,其中前者更为常见。

在查找目标元素时,从顶层列表、头元素起步。算法沿着每层链表搜索,直至找到一个大于或等于目标的元素,或者到达当前层列表末尾。如果该元素等于目标元素,则表明该元素已被找到;如果该元素大于目标元素或已到达链表末尾,则退回到当前层的上一个元素,然后转入下一层进行搜索。

跳跃列表不像平衡树等数据结构那样提供对最坏情况的性能保证:由于用来建造跳跃列表采用随机选取元素进入更高层的方法,在小概率情况下会生成一个不平衡的跳跃列表(最坏情况例如最底层仅有一个元素进入了更高层,此时跳跃列表的查找与普通列表一致)。但是在实际中它通常工作良好,随机化平衡方案也比平衡二叉查找树等数据结构中使用的确定性平衡方案容易实现。跳跃列表在并行计算中也很有用:插入可以在跳跃列表不同的部分并行地进行,而不用对数据结构进行全局的重新平衡。

跳跃表插入一个元素:

#####实现

因为跳跃列表中的元素可以在多个列表中,所以每个元素可以有多于一个指针。跳跃列表的插入和删除的实现与普通的链表操作类似,但高层元素必须在进行多个链表中进行插入或删除。

package io.github.hadyang.leetcode.algo;

import lombok.Getter;
import lombok.Setter;

import java.util.Arrays;
import java.util.Random;

/**

  • @author haoyang.shi
    */
    public class SkipList<K extends Comparable, V> {

@Getter
@Setter
static final class Node<K extends Comparable, V> {
private K key;

private V value;

private Node<K, V> up, down, pre, next;

Node(K key, V value) {
this.key = key;
this.value = value;
}

@Override
public String toString() {
return “Node{” +
“key=” + key +
“, value=” + value +
“, hashcode=” + hashCode() +
“, up=” + (up == null ? “null” : up.hashCode()) +
“, down=” + (down == null ? “null” : down.hashCode()) +
“, pre=” + (pre == null ? “null” : pre.hashCode()) +
“, next=” + (next == null ? “null” : next.hashCode()) +
‘}’;
}
}

private Node<K, V> head;//k,v都是NULL

private Integer levels = 0;

private Integer length = 0;

private Random random = new Random(System.currentTimeMillis());

public SkipList() {
createNewLevel();
}

public void put(K key, V value) {
if (key == null || value == null) {
return;
}

Node<K, V> newNode = new Node<>(key, value);
insertNode(newNode);
}

private void insertNode(Node<K, V> newNode) {
Node<K, V> curNode = findNode(newNode.getKey());
if (curNode.getKey() == null) {
insertNext(curNode, newNode);
} else if (curNode.getKey().compareTo(newNode.getKey()) == 0) {
//update
curNode.setValue(newNode.getValue());
return;
} else {
insertNext(curNode, newNode);
}

int currentLevel = 1;
Node<K, V> oldTop = newNode;
while (random.nextInt(100) < 50) {
Node<K, V> newTop = new Node<>(newNode.getKey(), null);

if (currentLevel >= levels) {
createNewLevel();
}

while (curNode.getPre() != null && curNode.getUp() == null) {
curNode = curNode.getPre();
}

if (curNode.getUp() == null) {
continue;
}

curNode = curNode.getUp();
Node<K, V> curNodeNext = curNode.getNext();

curNode.setNext(newTop);
newTop.setPre(curNode);
newTop.setDown(oldTop);
oldTop.setUp(newTop);

newTop.setNext(curNodeNext);
oldTop = newTop;

currentLevel++;
}
}

private void createNewLevel() {
Node<K, V> newHead = new Node<>(null, null);
if (this.head == null) {
this.head = newHead;
this.levels++;
return;
}

this.head.setUp(newHead);
newHead.setDown(this.head);
this.head = newHead;
this.levels++;
}

private void insertNext(Node<K, V> curNode, Node<K, V> newNode) {
Node<K, V> curNodeNext = curNode.getNext();
newNode.setNext(curNodeNext);
if (curNodeNext != null) {
curNodeNext.setPre(newNode);
}
curNode.setNext(newNode);
newNode.setPre(curNode);

this.length++;
}

public V get(K key) {
Node<K, V> node = findNode(key);
if (key.equals(node.getKey())) {
return node.getValue();
}

return null;
}

private Node<K, V> findNode(K key) {
Node<K, V> curNode = this.head;

for (; ; ) {
while (curNode.getNext() != null && curNode.getNext().getKey().compareTo(key) <= 0) {
curNode = curNode.getNext();
}

if (curNode.getDown() != null) {
curNode = curNode.getDown();
} else {
break;
}
}

return curNode;
}

public void print() {
Node<K, V> curI = this.head;

String[][] strings = new String[levels][length + 1];
for (String[] string : strings) {
Arrays.fill(string, “0”);
}

while (curI.getDown() != null) {
curI = curI.getDown();
}

System.out.println(“levels:” + levels + “_” + “length:” + length);

int i = 0;
while (curI != null) {
Node<K, V> curJ = curI;

int j = levels - 1;
while (curJ != null) {
strings[j][i] = String.valueOf(curJ.getKey());

if (curJ.getUp() == null) {
break;
}
curJ = curJ.getUp();
j–;
}

if (curI.getNext() == null) {
break;
}
curI = curI.getNext();
i++;
}

for (String[] string : strings) {
System.out.println(Arrays.toString(string));
}
}

public static void main(String[] args) {

SkipList<Integer, String> skipList = new SkipList<>();
) {
curI = curI.getDown();
}

System.out.println(“levels:” + levels + “_” + “length:” + length);

int i = 0;
while (curI != null) {
Node<K, V> curJ = curI;

int j = levels - 1;
while (curJ != null) {
strings[j][i] = String.valueOf(curJ.getKey());

if (curJ.getUp() == null) {
break;
}
curJ = curJ.getUp();
j–;
}

if (curI.getNext() == null) {
break;
}
curI = curI.getNext();
i++;
}

for (String[] string : strings) {
System.out.println(Arrays.toString(string));
}
}

public static void main(String[] args) {

SkipList<Integer, String> skipList = new SkipList<>();

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值