一、技术层图谱
-
核心技术应用
-
计算机视觉:智能驾驶(车道识别、行人检测)、生产质检(缺陷识别)。
-
自然语言处理(NLP):车载语音交互(小鹏、理想多模态助手)、客服机器人。
-
深度学习:自动驾驶算法迭代(Tesla FSD本地化适配)。
-
强化学习:智能驾驶决策优化(Waymo仿真训练)。
-
-
关键AI技术
-
边缘计算:车载芯片(地平线征程6、华为昇腾)实时处理。
-
联邦学习:跨车企数据协作(如政府主导的智能网联数据平台)。
-
生成式AI:个性化座舱设计(阿里通义千问赋能车载娱乐)。
-
二、应用场景图谱
1. 智能驾驶
-
L2+/L3级普及:2024年渗透率超40%(蔚来NOP+、小鹏XNGP)。
-
L4级试点:Robotaxi(百度Apollo、小马智行)在北上广深等15城开放测试。
-
商用车落地:港口/矿区无人驾驶(图森未来、西井科技)。
2. 智能制造
-
AI质检:宁德时代电池缺陷检测效率提升90%。
-
预测性维护:三一重工AI模型降低产线停机时间30%。
3. 智能座舱
-
情感交互:商汤“绝影”情绪识别系统。
-
场景化服务:华为鸿蒙车机AI行程规划。
4. 供应链优化
-
物流调度:京东物流AI算法赋能比亚迪零部件配送。
-
库存预测:长安汽车AI需求模型降低库存成本15%。
三、产业链协同图谱
-
上游:
-
芯片:地平线、黑芝麻智能(算力突破200TOPS)。
-
传感器:禾赛科技激光雷达成本下降50%。
-
-
中游:
-
Tier1:德赛西威、华为MDC智能驾驶平台。
-
算法公司:Momenta(数据驱动方案)。
-
-
下游:
-
主机厂:比亚迪“璇玑”AI大模型整合车端生态。
-
出行服务:T3出行AI动态定价覆盖50城。
-
四、政策与标准化
-
政策推动:工信部《智能网联汽车准入试点》2024年扩大至20省市。
-
数据安全:《汽车数据安全管理规定》约束AI训练数据合规(如脱敏处理)。
-
V2X基建:全国新建5G-RSU路侧单元超10万套(支持车路协同)。
五、挑战与趋势
-
挑战:
-
高阶自动驾驶责任认定法规空白。
-
车规级AI芯片国产化率不足30%。
-
-
趋势:
-
AI+车联网融合:5G+AI实现全域感知(如红旗C+级智慧道路项目)。
-
大模型上车:GPT-4级模型赋能全车智能(蔚来NOMI GPT内测)。
-
绿色AI:碳足迹追踪(吉利区块链+AI减排系统)。
-
六、代表企业案例
-
科技公司:华为(全栈式HI解决方案)、大疆车载(双目视觉方案)。
-
新势力:理想汽车(Mind GPT座舱助手)。
-
传统车企:广汽埃安(星灵电子电气架构+AI智驾)。