✍✍脉冲编程者**
⭐⭐个人介绍:技术狂脉冲编程者!专注于Java、Python等编程语言,擅长大数据分析、小程序开发、安卓应用设计、深度学习研究、网络爬虫技术、网站建设、Golang编程以及大屏展示项目。提供专业开发、定制、代做和设计服务,助您轻松解决技术难题!
⛽⛽实战项目:大家如有任何宝贵意见或技术方面的疑问,欢迎访问博主的主页个人空间进行咨询。
⚡⚡
Java、Python、小程序、大数据实战项目集
⚡⚡文末获取源码
新闻采集与订阅平台-研究背景
在信息爆炸的时代,新闻资讯的快速更新与传播对人们的生活产生了深远影响。然而,面对众多新闻源,用户往往难以高效地筛选和获取自己感兴趣的新闻内容。因此,开发一款能够自动化采集和个性化订阅新闻的平台显得尤为必要。本研究课题“Python新闻采集与订阅平台”应运而生,旨在解决这一问题。
二、现有解决方案存在的问题及课题研究目的
当前市场上的新闻采集与订阅工具普遍存在以下问题:一是信息采集的覆盖面有限,难以满足用户多样化的需求;二是订阅功能单一,缺乏个性化推荐;三是用户体验不佳,操作复杂。针对这些问题,本课题旨在研究并开发一个高效、智能的新闻采集与订阅平台,以提高用户获取新闻的便捷性和满意度。
三、课题的价值与意义
本课题的理论意义在于,通过研究新闻采集与订阅技术,为个性化推荐系统提供新的理论依据和实践案例。实际意义则体现在以下几个方面:一是帮助用户快速获取感兴趣的新闻,提高信息获取效率;二是推动新闻传播的个性化发展,满足用户个性化需求;三是有助于培养计算机专业学生的实际操作能力和创新精神。
新闻采集与订阅平台-技术
开发语言:Java或Python
数据库:MySQL
系统架构:B/S
后端框架:SSM/SpringBoot(Spring+SpringMVC+Mybatis)+Django
前端:Vue+ElementUI+HTML+CSS+JavaScript+jQuery+Echarts
新闻采集与订阅平台-视频展示
新闻采集与订阅平台 计算机毕设选题推荐 毕设选题讲解 程序定制 毕设带做 适合作为毕业设计 课程设计 项目实战 附源码+部署+文档
新闻采集与订阅平台-图片展示
新闻采集与订阅平台-代码展示
from flask import Flask, jsonify, request
from flask_sqlalchemy import SQLAlchemy
from bs4 import BeautifulSoup
import requests
app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///news.db'
db = SQLAlchemy(app)
# 新闻模型
class News(db.Model):
id = db.Column(db.Integer, primary_key=True)
title = db.Column(db.String(100), nullable=False)
link = db.Column(db.String(200), nullable=False)
source = db.Column(db.String(50), nullable=False)
# 用户订阅模型
class Subscription(db.Model):
id = db.Column(db.Integer, primary_key=True)
user_id = db.Column(db.Integer, nullable=False)
source = db.Column(db.String(50), nullable=False)
# 初始化数据库
db.create_all()
# 路由:获取所有新闻
@app.route('/news', methods=['GET'])
def get_news():
news_list = News.query.all()
return jsonify([{'title': news.title, 'link': news.link, 'source': news.source} for news in news_list])
# 路由:采集新闻
@app.route('/collect', methods=['POST'])
def collect_news():
source_url = request.json['source_url']
response = requests.get(source_url)
soup = BeautifulSoup(response.text, 'html.parser')
# 假设新闻标题和链接都在<h2>标签内
for h2 in soup.find_all('h2'):
title = h2.get_text()
link = h2.find('a')['href']
new_news = News(title=title, link=link, source=source_url)
db.session.add(new_news)
db.session.commit()
return jsonify({'message': 'News collected successfully.'})
# 路由:订阅新闻源
@app.route('/subscribe', methods=['POST'])
def subscribe():
user_id = request.json['user_id']
source = request.json['source']
new_subscription = Subscription(user_id=user_id, source=source)
db.session.add(new_subscription)
db.session.commit()
return jsonify({'message': 'Subscribed successfully.'})
if __name__ == '__main__':
app.run(debug=True)
新闻采集与订阅平台-结语
感谢各位同学对“Python新闻采集与订阅平台”项目的关注。我们团队秉持着创新、实用的理念,致力于为您带来更好的新闻阅读体验。如果您对我们的项目感兴趣,请点赞、关注、转发,支持我们的作品。同时,欢迎在评论区留下您的宝贵意见和建议,我们将悉心聆听,不断优化产品。让我们携手共进,探索智能新闻订阅的美好未来!
⚡⚡✍✍脉冲编程者**
⚡⚡查看Java、Python、小程序、大数据实战项目集
⚡⚡遇到技术问题或需要源代码?欢迎在评论区交流或在主页上联系博主!
⚡⚡感谢大家的点赞、收藏和关注。如有宝贵意见或技术问题,欢迎在评论区畅谈。
⚡⚡大家如有任何宝贵意见或技术方面的疑问,欢迎访问博主的主页个人空间进行咨询。
⭐⭐个人介绍:技术狂脉冲编程者,专注于分享计算机软件技术,专业设计开发Java(如Spring、Hibernate、MyBatis等框架)、Python(如Django、Flask、TensorFlow、PyTorch等框架)、小程序(如微信小程序、支付宝小程序等平台)、安卓(如Android SDK、Kotlin语言、React Native等框架)、大数据(如Hadoop、Spark、Flink等框架)、深度学习(如TensorFlow、PyTorch、Keras等框架)、爬虫(如Scrapy、BeautifulSoup、Selenium等工具)、网站(如HTML、CSS、JavaScript、React、Vue等前端技术,以及Node.js、PHP、ASP.NET等后端技术)、Golang(如Go语言标准库、Beego、Gin等框架)、大屏(如数据可视化库ECharts、D3.js等)等实战项目。