✍✍脉冲编程者**
⭐⭐个人介绍:技术狂脉冲编程者!专注于Java、Python等编程语言,擅长大数据分析、小程序开发、安卓应用设计、深度学习研究、网络爬虫技术、网站建设、Golang编程以及大屏展示项目。提供专业开发、定制、代做和设计服务,助您轻松解决技术难题!
⛽⛽实战项目:大家如有任何宝贵意见或技术方面的疑问,欢迎访问博主的主页个人空间进行咨询。
⚡⚡
Java、Python、小程序、大数据实战项目集
⚡⚡文末获取源码
挖掘的网络舆情监控-研究背景
1.1 课题背景 近年来,互联网技术的飞速发展使得信息传播速度和广度都达到了前所未有的程度。网络已成为信息传播的重要渠道,同时也是公众表达意见、参与社会事务的重要平台。网络舆情作为社会舆论在网络空间的映射,其产生、发展和演变对国家安全、社会稳定以及企业运营都产生了深远影响。如何有效地监测、分析和引导网络舆情,成为了一个亟待解决的重要问题。因此,构建一个基于爬虫与文本挖掘的网络舆情监控系统具有重要的现实意义和应用价值。
1.2 现有解决方案存在的问题 目前,市场上已经存在一些网络舆情监测系统,但它们在功能和性能上仍存在一些不足。例如,一些系统只能监测有限的网络平台,无法全面覆盖各种信息源;一些系统的文本挖掘能力有限,无法准确提取和分析舆情信息;还有一些系统的实时性较差,无法及时响应突发舆情事件。这些问题的存在,使得现有的网络舆情监测系统在实际应用中效果不佳,难以满足用户的需求。因此,开发一个功能更全面、性能更优越的网络舆情监控系统具有重要的研究价值。
1.3 课题的研究目的与意义 本课题旨在设计并实现一个基于爬虫与文本挖掘的网络舆情监控系统。该系统将利用爬虫技术从多个网络平台实时抓取舆情信息,并利用文本挖掘技术对抓取到的信息进行清洗、分类、情感分析等处理,最终实现对网络舆情的实时监测、分析和预警。通过本课题的研究,希望能够为网络舆情监测领域提供一个新的解决方案,提升网络舆情监测的效率和准确性,为政府、企业和社会公众提供更有价值的舆情信息服务。 理论意义: 本课题的研究将丰富网络舆情监测的理论体系,探索爬虫与文本挖掘技术在网络舆情监测中的应用,为相关领域的研究提供新的思路和方法。 实际意义: 本课题的研究成果将有助于提升网络舆情监测的效率和准确性,为政府、企业和社会公众提供更有价值的舆情信息服务,有助于维护国家安全、社会稳定和企业的良好运营。
挖掘的网络舆情监控-技术
开发语言:Java或Python
数据库:MySQL
系统架构:B/S
后端框架:SSM/SpringBoot(Spring+SpringMVC+Mybatis)+Django
前端:Vue+ElementUI+HTML+CSS+JavaScript+jQuery+Echarts
网络舆情监控系统-视频展示
基于爬虫与文本挖掘的网络舆情监控系统 计算机毕设选题推荐 计算机毕设选题讲解 毕设带做 适合作为毕业设计 课程设计 项目实战 附源码+部署+文档
网络舆情监控系统-图片展示
网络舆情监控系统-代码展示
import requests
from bs4 import BeautifulSoup
def fetch_webpage(url):
"""抓取网页内容"""
try:
response = requests.get(url)
response.raise_for_status()
return response.text
except requests.RequestException as e:
print(f"Error fetching webpage: {e}")
return None
def parse_webpage(html):
"""解析网页内容,提取所需信息"""
soup = BeautifulSoup(html, 'html.parser')
# 假设我们需要提取标题和内容
title = soup.find('h1').get_text()
content = soup.find('div', class_='content').get_text()
return {'title': title, 'content': content}
# 示例使用
url = 'http://example.com'
html = fetch_webpage(url)
if html:
article = parse_webpage(html)
print(article)
import jieba
def segment_text(text):
"""对文本进行分词"""
words = jieba.lcut(text)
return words
def extract_keywords(words, top_k=10):
"""提取关键词"""
from collections import Counter
word_counts = Counter(words)
common_words = word_counts.most_common(top_k)
return [word for word, count in common_words]
# 示例使用
text = "这是一个关于网络舆情监控的示例文本。"
words = segment_text(text)
keywords = extract_keywords(words)
print(keywords)
def sentiment_analysis(text):
"""简单情感分析,基于关键词匹配"""
positive_words = ['好', '积极', '正面']
negative_words = ['坏', '消极', '负面']
positive_count = sum(word in text for word in positive_words)
negative_count = sum(word in text for word in negative_words)
if positive_count > negative_count:
return 'positive'
elif positive_count < negative_count:
return 'negative'
else:
return 'neutral'
# 示例使用
sentiment = sentiment_analysis("这是一个很好的产品,非常满意!")
print(sentiment)
import sqlite3
def create_database(db_path):
"""创建数据库和表"""
conn = sqlite3.connect(db_path)
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS articles
(id INTEGER PRIMARY KEY, title TEXT, content TEXT, sentiment TEXT)''')
conn.commit()
conn.close()
def store_article(db_path, article):
"""存储文章信息到数据库"""
conn = sqlite3.connect(db_path)
c = conn.cursor()
c.execute("INSERT INTO articles (title, content, sentiment) VALUES (?, ?, ?)",
(article['title'], article['content'], article['sentiment']))
conn.commit()
conn.close()
# 示例使用
db_path = '舆情监控系统.db'
create_database(db_path)
article = {'title': '示例标题', 'content': '示例内容', 'sentiment': 'positive'}
store_article(db_path, article)
网络舆情监控系统-结语
基于爬虫与文本挖掘的网络舆情监控系统 计算机毕设选题推荐 计算机毕设选题讲解 毕设带做 适合作为毕业设计 课程设计 项目实战 附源码+部署+文档
如果你对这个项目感兴趣,或者有其它需求和建议,欢迎在作者主页上↑私信联系作者!
⚡⚡✍✍脉冲编程者**
⚡⚡查看Java、Python、小程序、大数据实战项目集
⚡⚡遇到技术问题或需要源代码?欢迎在评论区交流或在主页上联系博主!
⚡⚡感谢大家的点赞、收藏和关注。如有宝贵意见或技术问题,欢迎在评论区畅谈。
⚡⚡大家如有任何宝贵意见或技术方面的疑问,欢迎访问博主的主页个人空间进行咨询。
⭐⭐个人介绍:技术狂脉冲编程者,专注于分享计算机软件技术,专业设计开发Java(如Spring、Hibernate、MyBatis等框架)、Python(如Django、Flask、TensorFlow、PyTorch等框架)、小程序(如微信小程序、支付宝小程序等平台)、安卓(如Android SDK、Kotlin语言、React Native等框架)、大数据(如Hadoop、Spark、Flink等框架)、深度学习(如TensorFlow、PyTorch、Keras等框架)、爬虫(如Scrapy、BeautifulSoup、Selenium等工具)、网站(如HTML、CSS、JavaScript、React、Vue等前端技术,以及Node.js、PHP、ASP.NET等后端技术)、Golang(如Go语言标准库、Beego、Gin等框架)、大屏(如数据可视化库ECharts、D3.js等)等实战项目。