基于深度学习的短视频内容理解与推荐系统 计算机毕设选题推荐 计算机毕设文档一条龙服务! 可适用毕业设计 课程设计 项目实战 附源码+安装部署+文档指导

✍✍脉冲编程者**
⭐⭐个人介绍:技术狂脉冲编程者!专注于Java、Python等编程语言,擅长大数据分析、小程序开发、安卓应用设计、深度学习研究、网络爬虫技术、网站建设、Golang编程以及大屏展示项目。提供专业开发、定制、代做和设计服务,助您轻松解决技术难题!
⛽⛽实战项目:大家如有任何宝贵意见或技术方面的疑问,欢迎访问博主的主页个人空间进行咨询。
⚡⚡
Java、Python、小程序、大数据实战项目集

⚡⚡文末获取源码

短视频内容理解与推荐系统-研究背景

背景: 随着移动互联网的快速发展和智能手机的普及,短视频平台迅速崛起,成为人们获取信息、娱乐消遣的重要途径。短视频以其短小精悍、内容丰富、易于传播的特点,迅速占领了人们的碎片化时间。然而,海量的短视频内容也给用户在海量信息中高效获取感兴趣内容带来了巨大挑战。如何从海量的短视频中快速准确地理解内容,并根据用户的兴趣进行个性化推荐,成为了一个亟待解决的问题。 现有解决方案的问题: 传统的短视频推荐系统主要依赖于用户行为数据,如观看历史、点赞、评论等,通过协同过滤、基于内容的推荐等算法进行推荐。然而,这些方法存在一些局限性。首先,用户行为数据往往稀疏且存在冷启动问题,对于新用户或新视频,难以进行有效推荐。其次,这些方法主要关注用户的行为模式,而忽略了视频内容的本身信息,导致推荐的准确性不高。此外,短视频内容多样且复杂,包含丰富的视觉、听觉信息,传统的文本分析等方法难以有效提取和理解视频内容。 研究目的及意义: 本研究旨在探索基于深度学习的短视频内容理解与推荐系统,通过深度学习技术自动提取短视频的视觉和听觉特征,并结合用户行为数据,构建更精准的用户画像,从而实现更精准的个性化推荐。本研究的理论意义在于,它将深度学习技术应用于短视频内容理解和推荐领域,为该领域的研究提供了新的思路和方法。实际意义在于,本研究有望提高短视频推荐的准确性和用户满意度,提升用户体验,推动短视频行业的健康发展。

短视频内容理解与推荐系统-技术

开发语言:Java或Python
数据库:MySQL
系统架构:B/S
后端框架:SSM/SpringBoot(Spring+SpringMVC+Mybatis)+Django
前端:Vue+ElementUI+HTML+CSS+JavaScript+jQuery+Echarts

短视频内容理解与推荐系统-视频展示

基于深度学习的短视频内容理解与推荐系统 计算机毕设选题推荐 计算机毕设文档一条龙服务! 可适用毕业设计 课程设计 项目实战 附源码+安装部署+文档指导

短视频内容理解与推荐系统-图片展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

短视频内容理解与推荐系统-代码展示

import cv2
import numpy as np
from tensorflow.keras.models import load_model

# 加载预训练的深度学习模型
model = load_model('video_understanding_model.h5')

def extract_features(video_path):
    """
    提取视频特征
    """
    cap = cv2.VideoCapture(video_path)
    features = []
    
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        
        # 预处理帧
        processed_frame = preprocess_frame(frame)
        
        # 提取特征
        feature = model.predict(np.expand_dims(processed_frame, axis=0))
        features.append(feature)
    
    cap.release()
    return np.mean(features, axis=0)

def preprocess_frame(frame):
    """
    预处理视频帧
    """
    # 调整大小、归一化等
    processed_frame = cv2.resize(frame, (224, 224))
    processed_frame = processed_frame / 255.0
    return processed_frame
class UserInterestModel:
    def __init__(self):
        self.user_interests = {}
    
    def update_interests(self, user_id, video_features):
        """
        更新用户兴趣模型
        """
        if user_id not in self.user_interests:
            self.user_interests[user_id] = video_features
        else:
            # 可以使用加权平均或其他方法更新兴趣
            self.user_interests[user_id] = (self.user_interests[user_id] + video_features) / 2
    
    def get_interests(self, user_id):
        """
        获取用户兴趣
        """
        return self.user_interests.get(user_id, np.zeros((feature_dim,)))
class RecommendationSystem:
    def __init__(self, user_interest_model):
        self.user_interest_model = user_interest_model
    
    def recommend(self, user_id, candidate_videos):
        """
        为用户推荐视频
        """
        user_interest = self.user_interest_model.get_interests(user_id)
        recommendations = []
        
        for video in candidate_videos:
            video_features = extract_features(video['path'])
            similarity = cosine_similarity(user_interest, video_features)
            recommendations.append((video, similarity))
        
        # 根据相似度排序并返回推荐列表
        recommendations.sort(key=lambda x: x[1], reverse=True)
        return [video for video, similarity in recommendations]
    
def cosine_similarity(vec1, vec2):
    """
    计算余弦相似度
    """
    return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))

短视频内容理解与推荐系统-结语

基于深度学习的短视频内容理解与推荐系统 计算机毕设选题推荐 计算机毕设文档一条龙服务! 可适用毕业设计 课程设计 项目实战 附源码+安装部署+文档指导
如果你对这个项目感兴趣,或者有其它需求和建议,欢迎在作者主页上↑私信联系作者!

⚡⚡✍✍脉冲编程者**
⚡⚡查看Java、Python、小程序、大数据实战项目集
⚡⚡遇到技术问题或需要源代码?欢迎在评论区交流或在主页上联系博主!
⚡⚡感谢大家的点赞、收藏和关注。如有宝贵意见或技术问题,欢迎在评论区畅谈。
⚡⚡大家如有任何宝贵意见或技术方面的疑问,欢迎访问博主的主页个人空间进行咨询。
⭐⭐个人介绍:技术狂脉冲编程者,专注于分享计算机软件技术,专业设计开发Java(如Spring、Hibernate、MyBatis等框架)、Python(如Django、Flask、TensorFlow、PyTorch等框架)、小程序(如微信小程序、支付宝小程序等平台)、安卓(如Android SDK、Kotlin语言、React Native等框架)、大数据(如Hadoop、Spark、Flink等框架)、深度学习(如TensorFlow、PyTorch、Keras等框架)、爬虫(如Scrapy、BeautifulSoup、Selenium等工具)、网站(如HTML、CSS、JavaScript、React、Vue等前端技术,以及Node.js、PHP、ASP.NET等后端技术)、Golang(如Go语言标准库、Beego、Gin等框架)、大屏(如数据可视化库ECharts、D3.js等)等实战项目。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值