基于协同过滤的动漫推荐系统 计算机毕设选题推荐 计算机毕设文档一条龙服务! 可适用毕业设计 课程设计 项目实战 附源码+安装部署+文档指导

✍✍脉冲编程者**
⭐⭐个人介绍:技术狂脉冲编程者!专注于Java、Python等编程语言,擅长大数据分析、小程序开发、安卓应用设计、深度学习研究、网络爬虫技术、网站建设、Golang编程以及大屏展示项目。提供专业开发、定制、代做和设计服务,助您轻松解决技术难题!
⛽⛽实战项目:大家如有任何宝贵意见或技术方面的疑问,欢迎访问博主的主页个人空间进行咨询。
⚡⚡
Java、Python、小程序、大数据实战项目集

⚡⚡文末获取源码

动漫推荐系统-研究背景

随着互联网技术的迅猛发展和动漫产业的日益繁荣,动漫作品的数量和种类呈现出爆炸式增长。观众面临着海量选择,如何高效、精准地找到符合自身喜好的动漫作品成为一个亟待解决的问题。传统的推荐方式,如基于热门榜单或编辑推荐,往往难以满足用户的个性化需求,导致用户在寻找心仪动漫时耗费大量时间和精力。因此,开发一种能够根据用户历史行为和偏好进行智能推荐的系统显得尤为重要。 现有的动漫推荐解决方案主要存在以下问题:一是推荐结果缺乏个性化,难以满足用户的多样化需求;二是推荐算法的准确性和实时性有待提高,容易出现推荐结果陈旧或与用户喜好偏差较大的情况;三是系统可扩展性不足,难以应对不断增长的用户群体和动漫资源。针对这些问题,本课题旨在研究并开发一种基于协同过滤的动漫推荐系统,通过分析用户的历史行为和相似用户的喜好,为用户提供更加精准、个性化的动漫推荐服务。 本课题的研究具有重要的理论意义和实际意义。从理论角度来看,本课题深入探讨了协同过滤算法在动漫推荐领域的应用,丰富了推荐系统的研究内容,为相关领域的研究提供了新的思路和方法。从实际应用角度来看,本系统可以有效解决用户在寻找心仪动漫时遇到的困难,提升用户体验,促进动漫产业的健康发展。同时,本系统的研究成果也可以为其他领域的推荐系统开发提供参考和借鉴。

动漫推荐系统-技术

开发语言:Java或Python
数据库:MySQL
系统架构:B/S
后端框架:SSM/SpringBoot(Spring+SpringMVC+Mybatis)+Django
前端:Vue+ElementUI+HTML+CSS+JavaScript+jQuery+Echarts

动漫推荐系统-视频展示

基于协同过滤的动漫推荐系统 计算机毕设选题推荐 计算机毕设文档一条龙服务! 可适用毕业设计 课程设计 项目实战 附源码+安装部署+文档指导

动漫推荐系统-图片展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

动漫推荐系统-代码展示

1. 用户相似度计算
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
def calculate_user_similarity(user_ratings):
    """
    计算用户之间的相似度
    :param user_ratings: 用户评分矩阵
    :return: 用户相似度矩阵
    """
    # 将用户评分矩阵转换为稀疏矩阵
    sparse_matrix = np.array(user_ratings)
    # 计算用户之间的余弦相似度
    user_similarity = cosine_similarity(sparse_matrix)
    return user_similarity
2. 基于用户的协同过滤推荐
def user_based_recommendation(user_similarity, user_ratings, user_id, num_recommendations=5):
    """
    基于用户相似度进行推荐
    :param user_similarity: 用户相似度矩阵
    :param user_ratings: 用户评分矩阵
    :param user_id: 指定用户的ID
    :param num_recommendations: 推荐的动漫数量
    :return: 推荐的动漫列表
    """
    # 获取指定用户与其他用户的相似度
    similar_users = user_similarity[user_id]
    # 获取相似用户喜欢的动漫
    similar_user_likes = user_ratings[similar_users.argsort()[::-1]]
    # 计算推荐分数
    recommendation_scores = similar_user_likes.sum(axis=0)
    # 获取推荐动漫的索引
    recommended_anime_indices = recommendation_scores.argsort()[::-1][:num_recommendations]
    return recommended_anime_indices
3. 基于物品的协同过滤推荐
def item_based_recommendation(user_ratings, anime_id, num_recommendations=5):
    """
    基于物品相似度进行推荐
    :param user_ratings: 用户评分矩阵
    :param anime_id: 指定动漫的ID
    :param num_recommendations: 推荐的用户数量
    :return: 推荐的用户列表
    """
    # 计算动漫之间的相似度
    anime_similarity = cosine_similarity(user_ratings.T)
    # 获取与指定动漫相似的动漫
    similar_animes = anime_similarity[anime_id]
    # 获取推荐用户的索引
    recommended_user_indices = similar_animes.argsort()[::-1][:num_recommendations]
    return recommended_user_indices
    

动漫推荐系统-结语

感谢大家对本项目的关注和支持!希望通过我们的努力,能够为大家带来更加优质的动漫推荐体验。如果对我们的项目有任何建议或想法,欢迎在评论区留言交流,我们会认真阅读并积极改进。别忘了点赞、投币、收藏一键三连支持一下哦!你们的鼓励是我们前进的动力!后续我们也会持续更新系统的开发进展和使用技巧,敬请关注!

⚡⚡✍✍脉冲编程者**
⚡⚡查看Java、Python、小程序、大数据实战项目集
⚡⚡遇到技术问题或需要源代码?欢迎在评论区交流或在主页上联系博主!
⚡⚡感谢大家的点赞、收藏和关注。如有宝贵意见或技术问题,欢迎在评论区畅谈。
⚡⚡大家如有任何宝贵意见或技术方面的疑问,欢迎访问博主的主页个人空间进行咨询。
⭐⭐个人介绍:技术狂脉冲编程者,专注于分享计算机软件技术,专业设计开发Java(如Spring、Hibernate、MyBatis等框架)、Python(如Django、Flask、TensorFlow、PyTorch等框架)、小程序(如微信小程序、支付宝小程序等平台)、安卓(如Android SDK、Kotlin语言、React Native等框架)、大数据(如Hadoop、Spark、Flink等框架)、深度学习(如TensorFlow、PyTorch、Keras等框架)、爬虫(如Scrapy、BeautifulSoup、Selenium等工具)、网站(如HTML、CSS、JavaScript、React、Vue等前端技术,以及Node.js、PHP、ASP.NET等后端技术)、Golang(如Go语言标准库、Beego、Gin等框架)、大屏(如数据可视化库ECharts、D3.js等)等实战项目。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值