✍✍脉冲编程者**
⭐⭐个人介绍:技术狂脉冲编程者!专注于Java、Python等编程语言,擅长大数据分析、小程序开发、安卓应用设计、深度学习研究、网络爬虫技术、网站建设、Golang编程以及大屏展示项目。提供专业开发、定制、代做和设计服务,助您轻松解决技术难题!
⛽⛽实战项目:大家如有任何宝贵意见或技术方面的疑问,欢迎访问博主的主页个人空间进行咨询。
⚡⚡
Java、Python、小程序、大数据实战项目集
⚡⚡文末获取源码
校园食堂订餐系统-研究背景
背景
随着信息技术的迅猛发展,数字化、智能化已成为各行各业的重要趋势。在教育领域,校园信息化建设更是日益受到重视。食堂作为校园生活中的重要组成部分,其服务质量和效率直接影响到师生的日常生活。然而,传统的食堂订餐方式往往存在诸多不便,如排队时间长、选择困难、信息不透明等,这些问题不仅浪费了师生的宝贵时间,也降低了食堂的服务满意度。
现有解决方案的问题
目前,市场上已有一些校园食堂订餐系统,但它们大多功能单一,缺乏个性化推荐和智能分析能力。这些系统往往只能实现基本的菜单展示和订单处理,无法根据用户的饮食偏好和历史数据进行智能推荐,也无法为食堂管理者提供有效的数据支持,导致资源浪费和效率低下。
研究目的
针对上述问题,本课题旨在开发一个基于协同过滤算法的校园食堂订餐系统,通过智能化、个性化的服务,提升用户体验,优化食堂运营,实现校园食堂服务的现代化升级。
价值和意义
理论意义:本系统的研究和应用将丰富协同过滤算法在校园食堂订餐领域的应用案例,为相关理论研究提供实践基础。
实际意义:系统将有效解决校园食堂订餐中的实际问题,提高订餐效率,减少排队时间,提升师生满意度,同时为食堂管理者提供数据支持,实现资源优化配置。
校园食堂订餐系统-技术
开发语言:Java或Python
数据库:MySQL
系统架构:B/S
后端框架:SSM/SpringBoot(Spring+SpringMVC+Mybatis)+Django
前端:Vue+ElementUI+HTML+CSS+JavaScript+jQuery+Echarts
校园食堂订餐系统-视频展示
基于协同过滤算法的校园食堂订餐系统 计算机毕设选题推荐 毕设选题讲解 程序定制 毕设带做 适合作为毕业设计 课程设计 项目实战 附源码+部署+文档
校园食堂订餐系统-图片展示
校园食堂订餐系统-代码展示
1. 用户注册与登录
from flask import Flask, request, jsonify
from flask_sqlalchemy import SQLAlchemy
from werkzeug.security import generate_password_hash, check_password_hash
app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///campus_cafeteria.db'
db = SQLAlchemy(app)
class User(db.Model):
id = db.Column(db.Integer, primary_key=True)
username = db.Column(db.String(80), unique=True, nullable=False)
password_hash = db.Column(db.String(120), nullable=False)
def set_password(self, password):
self.password_hash = generate_password_hash(password)
def check_password(self, password):
return check_password_hash(self.password_hash, password)
@app.route('/register', methods=['POST'])
def register():
data = request.json
username = data['username']
password = data['password']
if User.query.filter_by(username=username).first() is not None:
return jsonify({'message': 'Username already exists'}), 400
new_user = User(username=username)
new_user.set_password(password)
db.session.add(new_user)
db.session.commit()
return jsonify({'message': 'User registered successfully'}), 201
@app.route('/login', methods=['POST'])
def login():
data = request.json
username = data['username']
password = data['password']
user = User.query.filter_by(username=username).first()
if user is None or not user.check_password(password):
return jsonify({'message': 'Invalid username or password'}), 401
# Here you would typically return a token or session ID
return jsonify({'message': 'Login successful'}), 200
if __name__ == '__main__':
db.create_all()
app.run(debug=True)
2. 菜品推荐(简化版协同过滤算法)
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
# 假设我们有一个用户-菜品评分矩阵
user_item_matrix = np.array([
[5, 3, 0, 1],
[4, 0, 0, 1],
[1, 1, 0, 5],
[1, 0, 0, 4],
[0, 1, 5, 4],
])
def recommend_items(user_id, user_item_matrix, num_recommendations=3):
# 计算用户之间的相似度
user_similarity = cosine_similarity(user_item_matrix)
# 获取与目标用户最相似的用户的索引
similar_users = np.argsort(user_similarity[user_id])[::-1][1:]
# 获取目标用户未评分的菜品索引
unrated_items = np.where(user_item_matrix[user_id] == 0)[0]
# 初始化推荐分数
item_scores = np.zeros(len(unrated_items))
# 计算每个未评分菜品的推荐分数
for i, item_id in enumerate(unrated_items):
similar_user_scores = user_item_matrix[similar_users, item_id]
similar_user_similarities = user_similarity[user_id, similar_users]
if similar_user_scores.any():
item_scores[i] = np.dot(similar_user_scores, similar_user_similarities) / np.sum(similar_user_similarities)
# 获取推荐分数最高的菜品索引
recommended_item_ids = unrated_items[np.argsort(item_scores)[::-1][:num_recommendations]]
return recommended_item_ids
# 为用户0推荐菜品
recommended_items = recommend_items(0, user_item_matrix)
print(f"Recommended items for user 0: {recommended_items}")
3. 订单管理
class Order(db.Model):
id = db.Column(db.Integer, primary_key=True)
user_id = db.Column(db.Integer, db.ForeignKey('user.id'), nullable=False)
item_id = db.Column(db.Integer, db.ForeignKey('item.id'), nullable=False)
quantity = db.Column(db.Integer, nullable=False)
status = db.Column(db.String(20), default='pending')
@app.route('/order', methods=['POST'])
def create_order():
data = request.json
user_id = data['user_id']
item_id = data['item_id']
quantity = data['quantity']
new_order = Order(user_id=user_id, item_id=item_id, quantity=quantity)
db.session.add(new_order)
db.session.commit()
return jsonify({'message': 'Order created successfully'}), 201
@app.route('/order/<int:order_id>', methods=['GET'])
def get_order(order_id):
order = Order.query.get(order_id)
if order is None:
return jsonify({'message': 'Order not found'}), 404
return jsonify({'order_id': order.id, 'user_id': order.user_id, 'item_id': order.item_id, 'quantity': order.quantity, 'status': order.status}), 200
# 这里可以添加更多订单管理的路由,如修改订单、取消订单等
校园食堂订餐系统-结语
感谢各位同学的关注与支持!本系统旨在为大家带来更便捷的校园食堂订餐体验。如果你有任何建议或想法,欢迎在评论区留言交流。别忘了点赞、分享和关注,你的支持是我们不断前进的动力!让我们一起期待更加智能的校园生活!
⚡⚡✍✍脉冲编程者**
⚡⚡查看Java、Python、小程序、大数据实战项目集
⚡⚡遇到技术问题或需要源代码?欢迎在评论区交流或在主页上联系博主!
⚡⚡感谢大家的点赞、收藏和关注。如有宝贵意见或技术问题,欢迎在评论区畅谈。
⚡⚡大家如有任何宝贵意见或技术方面的疑问,欢迎访问博主的主页个人空间进行咨询。
⭐⭐个人介绍:技术狂脉冲编程者,专注于分享计算机软件技术,专业设计开发Java(如Spring、Hibernate、MyBatis等框架)、Python(如Django、Flask、TensorFlow、PyTorch等框架)、小程序(如微信小程序、支付宝小程序等平台)、安卓(如Android SDK、Kotlin语言、React Native等框架)、大数据(如Hadoop、Spark、Flink等框架)、深度学习(如TensorFlow、PyTorch、Keras等框架)、爬虫(如Scrapy、BeautifulSoup、Selenium等工具)、网站(如HTML、CSS、JavaScript、React、Vue等前端技术,以及Node.js、PHP、ASP.NET等后端技术)、Golang(如Go语言标准库、Beego、Gin等框架)、大屏(如数据可视化库ECharts、D3.js等)等实战项目。