if (leftHeight < rightHeight) {return right;}
//相等返回同边的
return isLeftChild() ? left : right;
}
#### 四 .失衡问题的四种情况
##### 1.失衡问题
本来这棵二叉树是平衡的,可是一旦添加了 13 节点,我们发现 14 ,15, 9节点全部都失衡了。一般来说这是最坏的情况,一直到根节点全部都失衡。
最好的情况是只有 14 一个节点失衡 或者 不失衡。
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200808103512779.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNTA3MTA0,size_16,color_FFFFFF,t_70)
##### 2.失衡问题的解决大体分为四种情况
##### (1)解决失衡:LL右旋转(单旋)
为什么叫LL呢,因为对于一个节点,导致他失衡的原因是,左孩子的左孩子添加一个元素。单旋意味着旋转一次。
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200808104732517.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNTA3MTA0,size_16,color_FFFFFF,t_70)
如图我们看到,T0因为加了一个节点,导致grandparent失衡。这时我们的解决方法是右旋转:
g.left = p.right
p.right = g
p 成为此树的根节点。
旋转后结果
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200808105131555.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNTA3MTA0,size_16,color_FFFFFF,t_70)
平衡达到了,而且还是一颗搜索二叉树,但是我们还要注意一下两点
① 改变T2,p,g的父节点
②更新 p ,g 的高度。
**注意!!!平衡后树的高度较未添加红色节点前 没有变化**
**代码**
private void rotateLeft(Node<E> grand) {
Node<E> parent = grand.right;
Node<E> child = parent.left;
//旋转
grand.right = child;
parent.left = grand;
//更新父节点
//parent
parent.parent = grand.parent;
if (grand.isLeftChild()) {
grand.parent.left = parent;
}else if (grand.isRightChild()) {
grand.parent.right = parent;
}else {
//grand为根节点
root = parent;
}
//grand
grand.parent = parent;
//node
if (child != null) {
child.parent = grand;
}
//更新高度
updateHeight(grand);
updateHeight(parent);
}
##### (2)解决失衡:RR左旋转(单旋)
和LL右旋转 类似 RR左旋转 意味着,导致某个节点失衡的的原因是,它右孩子的右孩子添加了一个元素。
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200808105744347.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNTA3MTA0,size_16,color_FFFFFF,t_70)
g.right = p.left
p.left = g
p 成为此树的根节点。
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200808105834682.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNTA3MTA0,size_16,color_FFFFFF,t_70)
平衡达到了,而且还是一颗搜索二叉树,但是我们还要注意一下两点
① 改变T1,p,g的父节点
②更新 p ,g 的高度。
**注意!!!平衡后树的高度较未添加红色节点前 没有变化**
**代码**
private void rotateRight(Node<E> grand) {
Node<E> parent = grand.left;
Node<E> child = parent.right;
grand.left = child;
parent.right = grand;
parent.parent = grand.parent;
if (grand.isLeftChild()) {
grand.parent.left = parent;
}else if (grand.isRightChild()) {
grand.parent.right = parent;
}else {
root = parent;
}
grand.parent = parent;
if (child != null) {
child.parent = grand;
}
updateHeight(grand);
updateHeight(parent);
}
##### (3)解决失衡:LR 先左旋转再右旋转(双旋)
为什么叫LR呢,因为某个节点的左孩子的右孩子添加节点导致它的失衡。
双旋的意思时旋转两次
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200808110317832.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNTA3MTA0,size_16,color_FFFFFF,t_70)
对 p 左旋转
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200808110444284.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNTA3MTA0,size_16,color_FFFFFF,t_70)
对 g 右旋转
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200808110725198.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNTA3MTA0,size_16,color_FFFFFF,t_70)
代码很简单
rotateLeft(parent);
rotateRight(grand);
**注意!!!平衡后树的高度较未添加红色节点前 没有变化**
##### (4)解决失衡:RL 先右旋转再左旋转(双旋)
这个大家可以参照LR
#### 五 .afterAdd 函数设计
我们之前讲到,添加导致失衡的最坏情况是所有的祖父节点都失衡,那是不是所有的失衡节点都要去去一个一个平衡呢?
**并不是这样的.只要让高度最低的失衡节点恢复平衡,整棵树就可以恢复平和。(仅需要调整O(1)次),
而且失衡结点恢复平衡后,结点的高度和未添加结点平衡时的高度一样。这意味这,我们更新结点的高度这个操作到最低的失衡结点处就可以停止了。**
##### 1. 设计思路
因为只要平衡最低的失衡节点,树就可以恢复平衡,所以在恢复平衡函数rebalance(node); 后直接break 退出循环。
这是一种设计的思路:我们先把逻辑写下来,差什么函数,写完逻辑后再补。比如 rebalance(node); 现在只有逻辑意义:平衡一个节点。但是没有实现的代码。
protected void afterAdd(Node<E> node) {
while((node = node.parent) != null) {
if (isBalanced(node)) {
//更新高度
updateHeight(node);
}else {
//恢复平衡
rebalance(node);
break;
}
}
}
##### 2.恢复平衡 rebalance 方法设计
我们已经了解到了,失衡的四种情况,现在我们可以把四种情况整合一下,写一个无论哪种情况都能恢复平衡的 rebalance 函数,需要注意的是我们这个函数需要传入的是失衡节点,我们上述四种情况都是grandparent(也就是g节点)失衡。所以我们我们传入的型参就写grand。
注意!此函数是结局失衡问题的,无论是添加导致的失衡还是删除导致的失衡
private void rebalance(Node grand) {
//找高度比较高的子节点
Node parent = ((AVLNode)grand).tallerChild();
Node node = ((AVLNode)parent).tallerChild();
if (parent.isLeftChild()) {// L
if (node.isLeftChild()) {//LL
rotateRight(grand);
}else { //LR
rotateLeft(parent);
rotateRight(grand);
}
}else { //R
if (node.isRightChild()) {//RR
rotateLeft(grand);
}else {//RL
rotateRight(parent);
rotateLeft(grand);
}
}
}
##### 3.tallerChild 函数的设计意义
大家可以看到,AVLNode中有一个tallerChild 函数。而且我在rebalance中也用到了。为什么要写这个函数呢?
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200808160313344.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNTA3MTA0,size_16,color_FFFFFF,t_70)
大家看这个图,我传入rebalance的是 g 节点。我们看这个图得以知道,导致他失衡的是他左孩子的左孩子。但是没图的话,用代码如何去找是哪个子节点的 子节点让他失衡呢?
g节点失衡,导致他失衡的节点一定在他左右子树中高度最高的子树中,所以我们编写tallerchild 函数 ,来找高度最高的子树
#### 五 .删除导致的失衡问题,afterRemove函数设计
首先你需要知道的是
1 删除节点只可能导致父节结点失衡(有且只有一个节点失衡)
为什么呢?在删除导致失衡的情况下,被删除的结点不会改变失衡点的高度。所以祖先结点的平衡因子不会发生改变
2 让父节点恢复平衡之后可能会导致更高层的祖先节点失衡(最多需要O(logn)次调整)
##### 1.afterRemove函数设计
我们根据上述的绿字来设计afterRemove函数。
protected void afterRemove(Node<E> node) {
while((node = node.parent) != null) {
if (isBalanced(node)) {
//更新高度
updateHeight(node);
}else {
//恢复平衡
rebalance(node);
}
}
}
afterRemove和afterAdd的区别在于,比如删除结点的父节点失衡,我们平衡了父节点之后,祖父结点也有可能失衡,所以我们要一直循环,直到根结点。
相同点在于,更新高度这个操作都到最低的失衡节点处(删除只导致一个失衡节点,我们把它看做最低),但是他们的原因不同:
afterRemove是因为删除不影响失衡节点以上(包括失衡节点)的祖先节点高度。
afterAdd是因为失衡结点恢复平衡后,结点的高度和未添加结点平衡时的高度一样。即添加影响高度,但是平衡后恢复原先高度
#### 重构代码
AVL树是BST(二叉搜索树)的子类,BST代码在之前的文章中
import java.util.Comparator;
public class AVLTree extends BST{
//构造方法
public AVLTree(){
this(null);
}
public AVLTree(Comparator<E> comparator) {
super(comparator);
}
/*
一棵树是否平衡
*/
private boolean isBalanced(Node<E> node) {
return Math.abs(((AVLNode<E>)node).balanceFactor()) <= 1;
}
/*
高度更新方法的封装
*/
private void updateHeight(Node<E> node) {
((AVLNode<E>)node).updateHeight();
}
/*
AVL数需要有高度属性
AVL特有的节点
*/
private static class AVLNode<E> extends Node<E>{
int height = 1;
public AVLNode(E element, Node<E> parent) {
super(element, parent);
// TODO 自动生成的构造函数存根
}
/*
求平衡因子
*/
public int balanceFactor() {
int leftHeight = left == null ? 0 : ((AVLNode<E>)left).height;
int rightHeight = right == null ? 0 : ((AVLNode<E>)right).height;
return leftHeight - rightHeight;
}
/*
更新高度的方法
*/
public void updateHeight() {
int leftHeight = left == null ? 0 : ((AVLNode<E>)left).height;
int rightHeight = right == null ? 0 : ((AVLNode<E>)right).height;
height = 1 + Math.max(leftHeight, rightHeight);
}
/*
* 找比较高的子节点
*/
public Node<E> tallerChild(){
int leftHeight = left == null ? 0 : ((AVLNode<E>)left).height;
int rightHeight = right == null ? 0 : ((AVLNode<E>)right).height;
if (leftHeight > rightHeight) {return left;}
if (leftHeight < rightHeight) {return right;}
//相等返回同边的
return isLeftChild() ? left : right;
}
}
/*
* 重写方法恢复平衡的逻辑
*/
@Override
protected void afterAdd(Node<E> node) {
while((node = node.parent) != null) {
if (isBalanced(node)) {
//更新高度
updateHeight(node);
}else {
//恢复平衡
rebalance(node);
break;
}
}
}
/*
删除后恢复平衡的方法
*/
@Override
protected void afterRemove(Node<E> node) {
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!
加入社区》https://bbs.csdn.net/forums/4304bb5a486d4c3ab8389e65ecb71ac0
break;
}
}
}
/*
删除后恢复平衡的方法
*/
@Override
protected void afterRemove(Node<E> node) {
[外链图片转存中…(img-A9o5iubc-1725692844408)]
[外链图片转存中…(img-hauQUmoo-1725692844408)]
[外链图片转存中…(img-N9aG8aoj-1725692844409)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!
加入社区》https://bbs.csdn.net/forums/4304bb5a486d4c3ab8389e65ecb71ac0