3)确定初始值:dp[0][0]肯定是0,一点空间也没,一件物品也没,当然价值为0
4)确定遍历的数:外循环从1开始,因为i = 0时肯定价值为0,内循环也从1开始,同理
5)带入验证一下
代码:
#python
def max_value(weight, value, capacity):
n = len(weight) //看下物品一共有多少件
dp = [[0 for _ in range(capacity + 1)] for _ in range(n + 1)] //二维数组赋初值
for i in range(1, n + 1):
for j in range(1, capacity + 1):
if j < weight[i - 1]: //当第i个物品体积放不下的时候,价值还是和前一个相同
dp[i][j] = dp[i - 1][j]
else:
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i - 1]] + value[i - 1])
return dp[n][capacity] //返回结果
if __name__ == '__main__':
m, n = map(int, input().split())
weight = list(map(int, input().split()))
value = list(map(int, input().split()))
print(max_value(weight, value, n))
/java
public class KnapsackProblem {
public static int maxValue(int[] weight, int[] value, int capacity) {
int n = weight.length; // 物品数量
int[][] dp = new int[n + 1][capacity + 1]; // 初始化二维数组
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= capacity; j++) {
if (j < weight[i - 1]) { // 当前物品体积大于背包剩余容量,无法放入
dp[i][j] = dp[i - 1][j];
} else {
// 比较放入当前物品和不放入当前物品的价值,取较大者
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i - 1]] + value[i - 1]);
}
}
}
return dp[n][capacity]; // 返回最大价值
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int m = scanner.nextInt(); // 背包容量,但在原Python代码中未使用,可忽略
int n = scanner.nextInt(); // 物品数量
int[] weight = new int[n];
int[] value = new int[n];
for (int i = 0; i < n; i++) {
weight[i] = scanner.nextInt();
}
for (int i = 0; i < n; i++) {
value[i] = scanner.nextInt();
}
int maxValue = maxValue(weight, value, n);
System.out.println(maxValue);
scanner.close();
}
}
LeetCode 416. 分割等和子集
题目链接:416. 分割等和子集 - 力扣(LeetCode)
这居然也是一道0-1背包题目,先判断所有元素向加是不是偶数,如果是,取一半,然后开始dp
每道题都要考虑dp五步:
1)确定dp数组下标与值的关系:与0-1背包相同
2)确定递推公式:我们要把每个都赋值为Flase,因此这次不是比大小,boolean类型就用or来表示
3)确定初始值:dp[0][0]为1,可以分
4)确定遍历的数:外循环从1开始,因为i = 0时肯定价值为0,内循环从0开始就可以(为什么?这还是跟递推公式相关)
5)带入验证一下
代码:
#python
class Solution:
def canPartition(self, nums: List[int]) -> bool:
total = sum(nums)
if total % 2:
return False
target = total // 2
if max(nums) > target:
return False
n = len(nums)
### 更多面试题
**《350页前端校招面试题精编解析大全》**内容大纲主要包括 **HTML,CSS,前端基础,前端核心,前端进阶,移动端开发,计算机基础,算法与数据结构,项目,职业发展等等**

0页前端校招面试题精编解析大全》**内容大纲主要包括 **HTML,CSS,前端基础,前端核心,前端进阶,移动端开发,计算机基础,算法与数据结构,项目,职业发展等等**
[外链图片转存中...(img-oDNoISKR-1725952846989)]