开学第一课

文章目录

  • 一、加入qq群
    • (一)班级qq群:703173397
    • (二)入群要求
  • 二,加入学习通班级群
    • (一)学习通班级群
    • (二)手势签到
  • 三使用思维导图工具
    • (一)安装XMind
    • (二)创建思维导图做自我介绍
    • (三)操作要点小结
  • 四,使用大语言模型
  • 五,创建CSDN博客
    • (一)选择MarkDown编辑器
    • (二)MarkDown基本语法
      • 1、自动生成文章目录
      • 2、各个级别标题
      • 3、让内容变红
      • 4、制作表格
      • 5、数学公式
      • 6、不定积分
        • (1)公式
        • (2)示例
        • (3)利用Python计算不定积分
      • 7、定积分
        • (1)公式
        • (2)示例
        • (3)利用Python计算定积分

一、加入qq群

(一)班级qq群:703173397

在这里插入图片描述

(二)入群要求

  • 修改名片,使用实名
    在这里插入图片描述

二,加入学习通班级群

(一)学习通班级群

  • 2023数据一班邀请码:84554639
    在这里插入图片描述

(二)手势签到

在这里插入图片描述

三使用思维导图工具

(一)安装XMind

  • 安装完后,桌面会有快捷方式图标
  • 在这里插入图片描述

(二)创建思维导图做自我介绍

  • 自我介绍(罗明雪-2024)
    请添加图片描述

(三)操作要点小结

-选择模板、选择风格

  • 添加字节

    • 添加字节兄弟点:按tap
    • 添加 兄弟节点,按enter
  • 删除节点:选中节点,按del

  • 给节点添加图标(任务优先级)
    在这里插入图片描述

  • 生成概要(summary)
    请添加图片描述

  • 保存思维导图

  • 导出成ping图片

四,使用大语言模型

  • 有很多大语言模型,比如ChatGPT、通义千问、文心一言、豆包
  • 我们使用通义千问(https://tongyi.aliyun.com/qianwen/)
    在这里插入图片描述
  • 注册登录
    在这里插入图片描述
  • 将思维导图的自我介绍写成一篇具有某种风格的自我介绍文章
    -
  • 单击【发送】按钮,生成满足用户要求的文字
    在这里插入图片描述

五,创建CSDN博客

(一)选择MarkDown编辑器

  • 在内容管理的博客设置里,选择默认编辑器:MarkDown编辑器

在这里插入图片描述

  • 注意,千万不要忘了单击【保存】按钮,这样才能让设置生效

在这里插入图片描述

(二)MarkDown基本语法

1、自动生成文章目录

  • 在文章最前面添加注解:@[toc]\

2、各个级别标题

  • # : 一级标题
  • ## :二级标题
  • ###: 三级标题
  • 注意:#打完之后必须空一格

3、让内容变红

  • 用一对反单引号:``

4、制作表格

  • 2023级数据1班
学号姓名性别年龄班级电话
232064009罗明雪192023数据1班19980826353
232064010侯显柯202023数据1班18683173170
232062009罗明琴192023软件3班18782456704

5、数学公式

  • 勾股定理: a 2 + b 2 = c 2 a^2+b^2=c ^2 a2+b2=c2
  • 一元二次方程: a x 2 + b x + c = 0 ax^2+bx+c=0 ax2+bx+c=0
  • 求根公式:
    • x 1 = − b + b 2 − 4 a c 2 a x_1=\displaystyle\frac{-b+\sqrt{b^2-4ac}}{2a} x1=2ab+b24ac
    • x 2 = − b + b 2 − 4 a c 2 a x_2=\displaystyle\frac{-b+\sqrt{b^2-4ac}}{2a} x2=2ab+b24ac
    • x 3 = − b ± b 2 − 4 a c 2 a x_3=\displaystyle\frac{-b\pm\sqrt{b^2-4ac}}{2a} x3=2ab±b24ac
    • x 3 = − b ∓ b 2 − 4 a c 2 a x_3=\displaystyle\frac{-b\mp\sqrt{b^2-4ac}}{2a} x3=2abb24ac
  • 不等式:
  • x + 4 > 6 x+4\gt6 x+4>6gt:greater than
  • 3 + 2 x < 6 3+2x\lt6 3+2x<6lt:less than
  • x + 4 ≥ 6 x+4\ge6 x+46ge:greater than or equal to
  • 3 + 2 x ≤ 6 3+2x\le6 3+2x6le:less than or equal to

6、不定积分

(1)公式
  • ∫ f ( x ) d x = F ( x ) + C , F ′ ( x ) = f ( x ) \displaystyle\int f(x)dx=F(x)+C,F'(x)=f(x) f(x)dx=F(x)+C,F(x)=f(x)
(2)示例
  • f ( x ) = x 2 − 3 x + 2 f(x)=x^2-3x+2 f(x)=x23x+2的不定积分
  • ∫ f ( x ) d x = ∫ ( x 2 − 3 x + 2 ) d x = ( x 3 3 − 3 x 2 2 + 2 x ) + C \displaystyle\int f(x)dx=\displaystyle\int (x^2-3x+2)dx=\left(\frac{x^3}{3}-\frac{3x^2}{2}+2x\right)+C f(x)dx=(x23x+2)dx=(3x323x2+2x)+C
(3)利用Python计算不定积分
  • 需要导入sympyscipy两个库
  • 在这里插入图片描述

7、定积分

(1)公式
  • 牛顿 - 莱布尼茨公式: ∫ a b f ( x ) d x = F ( x ) ∣ b a = F ( b ) − F ( a ) \displaystyle \int_a^bf(x)dx=F(x)\Bigg|{b \atop a}=F(b)-F(a) abf(x)dx=F(x)ab=F(b)F(a)
(2)示例
  • ∫ 1 2 f ( x ) d x = ∫ 1 2 ( x 2 − 3 x + 2 ) d x = ( x 3 3 − 3 x 2 2 + 2 x ) ∣ 2 1 = ( 8 3 − 6 + 4 ) − ( 1 3 − 3 2 + 2 ) = 2 3 − 5 6 = − 1 6 \displaystyle \int_1^2f(x)dx=\int_1^2(x^2-3x+2)dx=\left(\frac{x^3}{3}-\frac{3x^2}{2}+2x\right)\Bigg|{2 \atop 1}=\left(\frac{8}{3}-6+4\right)-\left(\frac{1}{3}-\frac{3}{2}+2\right)=\frac{2}{3}-\frac{5}{6}=-\frac{1}{6} 12f(x)dx=12(x23x+2)dx=(3x323x2+2x)12=(386+4)(3123+2)=3265=61
(3)利用Python计算定积分
  • 需要导入sympy和scipy两个库
    在这里插入图片描述
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值