计算机毕业设计之基于大数据技术的豆瓣电视剧排行榜数据的分析研究一博美玲

随着大数据技术的快速发展,对海量数据进行有效分析和挖掘已成为当前研究的热点。本文旨在利用大数据技术,对豆瓣电视剧排行榜数据进行深入的分析研究,以揭示其内在规律和趋势。

本文首先介绍了豆瓣电视剧排行榜的数据来源和基本情况,包括数据的获取、清洗和预处理过程。随后,利用大数据技术对数据进行深入的挖掘和分析,包括使用关联规则挖掘技术探究电视剧之间的关联关系,利用聚类分析对电视剧进行分类,以及采用时间序列分析对排行榜的变化趋势进行预测。

在数据分析的基础上,本文进一步探讨了豆瓣电视剧排行榜的形成机制和影响因素。研究发现,电视剧的口碑、演员阵容、题材类型等因素对排行榜的排名具有显著影响。同时,观众的偏好和市场环境的变化也会对排行榜产生一定的影响。

通过本研究,我们不仅深入了解了豆瓣电视剧排行榜的内在规律和趋势,还为电视剧制作方和投资者提供了有价值的参考信息。未来,我们将继续探索更多的大数据技术,以更精准地分析电视剧市场的变化和发展趋势,为相关产业的发展提供有力支持。

本项目所设计的基于大数据技术的豆瓣电视剧排行榜数据的分析系统用户为负责豆瓣电视剧数据分析与预测人员及网络平台产品经理等制定豆瓣电视剧数据分析人员,传统的豆瓣电视剧数据分析与预测分析处理后的数据会产生一些比较复杂且难以理解的数据,直接将这些数据提供给豆瓣电视剧数据分析人员或者产品经理将是非常不友好的。所以需要将分析好的数据以可视化界面的方式去展示给豆瓣电视剧数据分析人员及网络平台负责策略调整的产品经理。在基于大数据技术的豆瓣电视剧排行榜数据的分析系统的可视化展示功能中主要分为五个模块,分别是Davinci登录模块、豆瓣电视剧数据分析与预测、用户管理和数据,如图3-2所示。

图3-2 系统功能模块图

3)图5-4为用户首页。可以看到有电视剧推荐等信息,首页推荐是按用户相似收藏行为推荐的,比如用户1收藏电视剧A和电视剧B,用户2收藏电视剧C,然后用户3登录收藏电视剧A那么此时用自3的行为跟用户1是最像的(因为他们都收藏了电视剧A),系统就会先推荐电视剧B.而不是推荐电视剧。

图5-4  用户首页

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值