一、Hadoop 是什么
Hadoop 是一个提供分布式存储和计算的开源软件框架,它具有无共享、高可用(HA)、弹性可扩展的特点,非常适合处理海量数量。
Hadoop 是一个开源软件框架
Hadoop 适合处理大规模数据
Hadoop 被部署在一个可扩展的集群服务器上
二、Hadoop 三大核心组件
HDFS(分布式文件系统) -—— 实现将文件分布式存储在集群服务器上
MAPREDUCE(分布式运算编程框架) —— 实现在集群服务器上分布式并行运算
YARN(分布式资源调度系统) —— 帮用户调度大量的 MapReduce 程序,并合理分配运算资源(CPU和内存)
1、HDFS
定义
HDFS (Hadoop Distributed File System) ,它是一个文件系统,用于存储文件,通过目录树来定位文件;其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色。
HDFS 的使用场景:适合一次写入,多次读出的场景,且不支持文件的修改。适合用来做数据分析,并不适合用来做网盘应用。
优缺点
优点:
( 1 )高容错性
①数据自动保存多个副本。它通过增加副本的形式,提高容错性。
②某一个副本丢失以后,它可以自动恢复。
(2)适合处理大数据
①数据规模:能够处理数据规模达到 GB 、 TB 、甚至 PB 级别的数据;
②文件规模:能够处理百万规模以上的文件数量,数量相当之大。
(3)可构建在廉价机器上,通过多副本机制,提高可靠性。
缺点:
( 1 )不适合低延时数据访问,比如毫秒级的存储数据,是做不到的。
(2)无法高效的对大量小文件进行存储。
①存储大量小文件的话,它会占用 NameNode 大量的内存来存储文件目录和块信息。这
样是不可取的,因为 NameNode 的内存总是有限的;
②小文件存储的寻址时间会超过读取时间,它违反了 HDFS 的设计目标。
(3)不支持并发写入、文件随机修改。
①一个文件只能有一个写,不允许多个线程同时写;
②仅支持数据 append ( 追加 ) ,不支持文件的随机修改。