AI画师技术又精进了 AI画师三维版试玩——Dreamfields和DreamFusion向文本生成3D模型领域进发

1、AI画师三维版的兴起

然而最近,二维版的绘画领域已经满足不了AI了,AI已经开始进入3D世界,直接一句话/一张图,生成3D模型、立体人像、全方位环绕视频,输入简单的文本提示,就能生成3D模型,比如

  1. 一幅美丽的花树画,Chiho Aoshima风格,长镜头,超现实主义:
    请添加图片描述
  2. 青蛙穿着毛衣;蛋壳裂成两半,旁边站着一只可爱的小鸡请添加图片描述
  3. 一张美丽的天空城市的插图,吉卜力工作室,艺术站,8k HD”请添加图片描述

可以看到生成的模型不仅可以渲染生动的物体形状,还可以渲染合理的光线、颜色、密度,更重要的是,生成的3D模型还可以导出到网格中,用建模软件进一步加工

2、Dreamfields-3D AI画师三维版试玩

前不久Dreamfields-3D已经宣布开源,并且提供了colab地址

这意味着AI画师三维版玩法十分低门槛,对我们本地机器没有任何硬性配置要求,直接在线就可以colab试玩了。大致只需要三步。这里我们介绍一下colab上在线玩的步骤:

2.1、第一步:进入colab

首先打开Dreamfields-3D的colab试玩地址,可以看到,Dreamfields-3D的Jupyter Notebook代码:
在这里插入图片描述
展开可以看到,其分为三大部分:①机器检查;②环境安装;③训练和测试
在这里插入图片描述

2.2、第二步:连接Google云端硬盘

点击check the machine的运行按钮
在这里插入图片描述
代码需要连接Google云端硬盘读写文件,点击连接。
在这里插入图片描述

2.3、第三步:配置参数 开始运行

配置一下training和test的设置参数,保存格式有视频和网格两种,输出模型格式为带顶点色的obj和ply。如果你只是简单试玩,可以选择不动他的参数。
在这里插入图片描述
然后依次点击运行按钮就可以开始试玩了,初始训练轮数为200轮,每轮运行时间大概需要1分钟,每10轮会进行一次输出,可以观看每10轮的效果:
在这里插入图片描述
等待训练完成后,就可以输入自己想要的文本来生成3D模型啦。

3、DreamFusion 原理分析

上节我们体验的是Dreamfields-3D,可以看到虽然可以生成模型,但是看起来效果并不是很好,风格比较诡异,而前不久Google Research在Dreamfields-3D基础上做了改进,发布了最新成果DreamFusion,让生成模型的形态、颜色、光线、密度有巨大的飞跃,虽然 Dreamfusion 还未开放使用,但项目网站提供了生成画廊:DreamFusion预览地址
在这里插入图片描述
直接训练一个text-to-3D的模型非常困难,因为DALL-E 2等模型的训练需要吞噬数十亿个图像-文本对,但并不存在如此大规模的3D标注数据,目前也没有一个高效的模型架构对3D数据进行降噪。DreamFusion先使用一个预训练2D扩散模型基于文本提示生成一张二维图像,然后引入一个基于概率密度蒸馏的损失函数,通过梯度下降法优化一个随机初始化的神经辐射场NeRF模型。

在DreamFusion中,使用了一个预先训练的二维文本到图像扩散模型,扩散模型是潜在变量生成模型,它学习将样本从可控制的噪声分布逐渐转换为数据分布。
在这里插入图片描述
评分蒸馏采样的损失函数叫SDS,其代替CLIP通过文本到图像的Imagen扩散模型来计算损失。用评分蒸馏采样来表示生成过程中的损失,通过不断优化最小化这种损失,
通过优化实现可控制的采样,从而输出质量良好的3D模型。

除此之外,与Dream Fields相比,Dreamfusion通过文本提示生成高质量、深度和普通的背光3D对象。使用Dreamfusion生成的多个3D模型也可以缝合到一个场景中,比如下图,迭代地细化一个示例文本提示,同时从四个不同的方面渲染每个生成的场景:
在这里插入图片描述
Dreamfusion从随机的相机位置和角度反复渲染NeRF的视图,用这些渲染结果作为环绕Imagen的分数蒸馏损失函数的输入。每次迭代都包含四步:①随机采样一个相机和灯光;②从该相机和灯光下渲染NeRF的图像;③计算SDS损失相对于NeRF参数的梯度;④使用优化器更新NeRF参数。

例子:冲浪板上孔雀的单反照片:
在这里插入图片描述

4、文本生成3D模型的未来

作为一名人工智能领域研究生,早在21年上半年,我就开始深入文本生成图像领域,可以说,领域内一年半来的发展真的非常迅速,目前都已经有很多比较成熟的商业应用,自从文本引导的图像生成模型火了以后,画家群体迅速扩张,不会用画笔的人也能发挥想象力进行艺术创作。

那么对于文本生成3D这个新的领域,未来AI用于模型设计辅助的潜力也是值得期待,不仅能帮助画师进行设计,也许还能帮助建模师/设计师进行3D建模、产品设计、学术建模、建筑设计、元宇宙开发等等,潜力无限,为何不现在就开始学习新工具,开始全新的创意探索呢?

💡 最后

我们已经建立了🏤T2I研学社群,如果你对Dreamfields和DreamFusion还有其他疑问或者对🎓文本生成图像/文本生成3D方向很感兴趣,可以点击下方链接或者私信我加入社群

📝 加入社群 抱团学习中杯可乐多加冰-采苓AI研习社

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值