reduce,reducele,fold函数的应用

### torch.nn.functional.fold 函数解析 #### 1. 功能概述 `torch.nn.functional.fold` 是 PyTorch 中用于将展开的数据重新折叠回原始空间尺寸的函数。该操作常用于实现卷积层的逆过程,即将通过 `unfold` 展开后的特征映射恢复成原来的图像或其他多维数组形式。 #### 2. 参数详解 - **input**: 输入张量,形状为 `(N, C * ∏(kernel_size), L)`,其中 N 表示 batch size;C 为通道数量;`∏(kernel_size)` 表示滑动窗口大小的乘积;L 则指代滑动窗口在输入上移动的位置总数[^4]。 - **output_size (tuple[int, int])**: 输出的空间尺寸,即希望得到的结果的高度 H 和宽度 W 组成的二元组。 - **kernel_size (int or tuple)**: 定义了滑动窗口的尺寸,可以是一个整数或两个整数构成的元组来分别指定高度和宽度方向上的尺寸。 - **dilation (int or tuple, optional)**: 控制滑动窗口内元素之间间距,默认值为 1。如果设置大于 1,则会在相邻像素间插入额外空白区域以扩大感受野范围。 - **padding (int or tuple, optional)**: 对输入边界填充零的数量,默认不填充值。同样支持单独设定上下左右四个边界的填充宽度。 - **stride (int or tuple, optional)**: 指定每次滑动的距离,默认情况下等于 kernel_size 的值,意味着无重叠地覆盖整个输入区域。 ```python import torch from torch import nn # 创建一个随机张量作为例子 input_tensor = torch.randn(2, 3*9, 8) # 使用 fold 将其转换回去 folded_output = nn.functional.fold( input=input_tensor, output_size=(3, 3), kernel_size=3, dilation=1, padding=0, stride=1 ) print(folded_output.shape) # 应输出 torch.Size([2, 3, 3, 3]) ``` 上述代码展示了如何利用 `nn.functional.fold()` 方法处理给定的一批二维矩阵,并将其重构为具有特定空间结构的新批次数据集。这里假设我们有一个批量大小为 2、每条记录包含 3 个通道以及经过 unfold 后展开了 8 块子区域的信息流,在执行 fold 运算之后成功还原成了原图尺寸 \(3 \times 3\) 的两幅三通道图像[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值