引言
在人工智能飞速发展的当下,多模态大模型已成为研究与应用的前沿热点。多模态数据,涵盖图像、文本、语音等多种形式,能为智能系统提供更丰富、全面的信息。Transformer 架构的诞生,为多模态大模型的发展注入了强大动力,以其独特的自注意力机制,打破了传统神经网络在处理长序列和复杂关系时的局限,实现了在不同模态数据处理中的卓越表现。
Transformer 架构基础回顾
自注意力机制
Transformer 的核心在于自注意力机制,它允许模型在处理序列中的每个位置时,能够同时关注到序列中其他所有位置的信息,以此来动态地计算每个位置的表示。以文本序列为例,给定一个输入序列
x=[x1,x2,...,xn]
,对于位置
i
的自注意力计算过程如下:
- 首先,通过线性变换将输入
xi
分别投影到三个不同的向量空间,得到查询向量qi
、键向量ki
和值向量vi
,即qi=Wqxi
,ki=Wkxi
,vi=Wvxi
,其中Wq
、Wk
、Wv
是可学习的权重矩阵。
- 然后,计算位置
i
与其他所有位置j
的注意力分数eij
,公式为eij=dkqiTkj
,其中dk
是键向量的维度,其目的是对分数进行归一化,防止在高维空间中内积过大导致梯度消失或爆炸问题。
- 接着,通过 Softmax 函数将注意力分数转化为归一化的注意力权重
aij=∑j=1nexp(eij)exp(eij)
,该权重表示位置i
对位置j
的关注程度。
- 最后,位置
i
的自注意力输出zi
是所有位置的值向量vj
的加权和,即zi=j=1∑naijvj
。
这种自注意力机制使得模型能够自动捕捉序列中不同位置之间的依赖关系,在处理长序列时表现出明显优于传统循环神经网络(RNN)和卷积神经网络(CNN)的性能。例如,在机器翻译任务中,Transformer 可以轻松地处理源语言句子中远距离词汇之间的语义关联,从而生成更准确、流畅的目标语言翻译。
多头注意力机制
为了进一步增强自注意力机制的表示能力,Transformer 引入了多头注意力机制。多头注意力机制通过同时使用多个不同的线性投影,将输入映射到多个不同的子空间中,分别计算自注意力,然后将这些子空间的输出拼接起来,再经过一个线性变换得到最终输出。形式化地,假设有
h
个注意力头,每个头
l
都有其独立的查询、键和值变换矩阵
Wql
、
Wkl
、
Wvl
,对于输入
x
,第
l
个头的输出
zl
按照上述自注意力机制计算得到,即
zl=j=1∑naijlvjl
,其中
aijl
是第
l
个头中位置
i
对位置
j
的注意力权重。最终的多头注意力输出
Z
为
Z=[z1;z2;...;zh]WO
,其中
[z1;z2;...;zh]
表示将
h
个注意力头的输出按列拼接,
WO
是一个可学习的权重矩阵,用于将拼接后的结果映射回原始维度空间。
多头注意力机制可以看作是在多个不同子空间中并行地进行自注意力计算,每个子空间关注输入序列的不同方面特征,从而使得模型能够更全面、丰富地捕捉序列中的信息。例如,在文本分类任务中,不同的注意力头可能分别关注句子中的主语、谓语、宾语等不同语法成分,或者关注不同语义层面的信息,如主题、情感等,从而提高分类的准确性。
位置编码
由于 Transformer 架构本身不具备对序列中位置信息的固有感知能力,为了让模型能够区分不同位置的元素,引入了位置编码。位置编码是将位置信息直接编码到输入序列中,与输入向量相加后一同输入到模型中。常见的位置编码方式有正弦位置编码和学习型位置编码。
正弦位置编码的计算公式为:
PE(pos,2i)=sin(100002i/dmodelpos)
PE(pos,2i+1)=cos(100002i/dmodelpos)
其中,
pos
表示位置,
i
表示维度索引,
dmodel
是模型的维度。正弦和余弦函数的不同频率组合为不同位置生成了唯一的编码向量,这种编码方式具有相对位置信息保持的特性,即两个位置之间的相对距离在编码空间中也能得到体现,这对于模型理解序列中的顺序关系至关重要。
学习型位置编码则是通过一个可学习的参数矩阵来表示位置信息,与输入序列一同在训练过程中进行优化。与正弦位置编码相比,学习型位置编码更加灵活,能够根据具体任务和数据特点