摘要:本文深入探讨了强化学习中基于深度 Q 网络(DQN)的改进算法在复杂环境下的策略优化问题。首先介绍了强化学习和深度 Q 网络的基本原理,然后详细分析了传统 DQN 在复杂环境中面临的挑战,如样本效率低、对环境变化适应性差等。接着,重点阐述了一系列针对这些问题的改进算法,包括优先经验回放、双深度 Q 网络、对决网络等,并通过实验对比分析了这些改进算法在不同复杂环境下的性能表现。最后,对未来强化学习算法在复杂环境下的发展方向进行了展望,为进一步提高强化学习在实际复杂场景中的应用效果提供了参考。
关键词:强化学习;深度 Q 网络;复杂环境;策略优化
一、引言
强化学习作为机器学习的一个重要分支,旨在通过智能体与环境的交互来学习最优策略,以最大化累积奖励。深度 Q 网络(DQN)将深度学习与强化学习相结合,能够自动学习状态的特征表示,在许多领域取得了显著的成功,如游戏、机器人控制等。然而,在复杂环境中,传统的 DQN 算法面临着诸多挑战,如环境的高维性、动态性和不确定性等,导致其策略优化效果不佳。因此,研究基于深度 Q 网络的改进算法以适应复杂环境下的策略优化具有重要的理论和实际意义。
二、强化学习与深度 Q 网络基础
(一)强化学习基本概念
强化学习系统由智能体(Agent)、环境(Environment)、状态(State)、动作(Action)和奖励(Reward)等要素组成。智能体根据当前环境状态选择动作,环境根据智能体的动作转移到新的状态,并给予智能体相应的奖励。智能体的目标是通过不断地与环境交互,学习到一个最优策略,使得长期累积奖励最大化。
(二)深度 Q 网络原理
深度 Q 网络是一种基于值函数的强化学习算法,它利用深度神经网络来逼近 Q 值函数。Q 值函数表示在给定状态下采取某个动作的长期累积奖励的期望。DQN 的网络结构通常包括输入层、隐藏层和输出层。输入层接收环境状态的特征表示,通过隐藏层的非线性变换,