传感器融合技术在智能驾驶中的应用与挑战:多源数据的协同处理

摘要:智能驾驶是汽车行业的未来发展方向,而传感器融合技术作为智能驾驶的关键支撑,对于实现车辆对复杂环境的准确感知和决策具有重要意义。本文详细阐述了传感器融合技术在智能驾驶中的应用,包括不同类型传感器的特点、融合的层次和方法,以及在各种驾驶场景中的具体应用。同时,深入分析了该技术面临的挑战,如数据处理的复杂性、传感器精度和可靠性差异、环境因素的影响等,并探讨了相应的解决方案和未来发展趋势。

一、引言

智能驾驶旨在通过先进的技术实现车辆的自动化驾驶,提高交通安全性、效率和舒适性2。在智能驾驶系统中,传感器融合技术扮演着核心角色,它能够整合来自多种传感器的数据,弥补单一传感器的不足,为车辆提供全面、准确的环境信息,从而支持车辆做出合理的决策和控制。

二、智能驾驶中的传感器类型及特点

(一)摄像头

摄像头是智能驾驶中常用的视觉传感器1。它通过镜头采集图像,并由内部感光组件电路及控制组件将图像转化为数字信号,实现图像影像识别功能1。摄像头可分为单目摄像头、双目摄像头和广角摄像头等不同类型1。单目摄像头结构简单、成本较低,但只能获取二维图像信息,在深度感知方面存在局限;双目摄像头通过模拟人眼的双目视觉原理,能够获取物体的深度信息,提高对环境的三维感知能力;广角摄像头则具有较大的视野范围,可用于监测车辆周围的大面积区域,例如在路口转弯或停车时检测周边的障碍物和行人。摄像头在识别交通标志、车道线、车辆和行人等方面具有独特优势,是实现车道偏离预警、前向碰撞预警、交通标志识别等众多 ADAS 功能的基础1。然而,摄像头的性能容易受到光照条件、天气状况(如雨、雪、雾等)的影响,在恶劣环境下图像质量会下降,从而影响目标识别的准确性。

(二)激光雷达

激光雷达通过发射多束激光,并接收物体反射的信号来计算目标与自身的距离1。其主要工作原理有利用反射信号的折返时间计算距离(ToF)和调频连续波(FMCW)方法1。激光雷达具有分辨率高、隐蔽性好、抗有源干扰能力强、低空探测性好、轻便灵巧等优点1。它能够提供高精度的三维点云数据,精确地描绘出车辆周围环境的地形地貌和物体轮廓,对于障碍物检测、地图构建和车辆定位等任务具有重要作用。例如,在自动驾驶汽车的定位过程中,激光雷达可以通过与预先构建的地图进行匹配,准确确定车辆的位置。不过,激光雷达也存在一些不足之处,如全天候性能低于微波雷达,在大雨、浓雾等天气条件下,激光的传播会受到散射和衰减,导致测量范围和精度下降;此外,激光雷达的波束较窄,搜索目标困难,且技术难度较大,成本相对较高。

(三)毫米波雷达

毫米波雷达发射电磁波并检测回波来探测目标物的有无、距离、速度和方位角1。其原理是通过振荡器形成持续变化的信号,在发出信号和接收信号之间形成频率差,该差值与发射 - 接收时间差成线性关系,从而通过频率差计算车辆与物体的距离,同时通过跟踪位置进行微分求得速度1。毫米波雷达具有较高的检测精度,能够在各种天气条件下稳定工作,尤其是在恶劣天气下(如雨、雾、雪)的性能优于摄像头和激光雷达。它对运动目标的检测和跟踪能力较强,可实时监测车辆周围物体的速度和运动状态,为车辆的避障和自适应巡航等功能提供重要支持。目前,77GHz 毫米波雷达正逐步取代 24GHz 毫米波雷达,成为汽车领域主流的传感器,这是因为 77GHz 毫米波雷达的检测精度更高,相对体积更小巧,利于车上器件安装和布局1。然而,毫米波雷达在角度分辨率方面相对较低,对于一些形状和结构的识别能力不如摄像头和激光雷达。

(四)超声波传感器

超声波传感器通常用于低速行驶和停车场景2。它通过发射和接收超声波信号来探测车辆周围的障碍物,当超声波遇到障碍物时会反射回来,传感器根据反射信号的时间来计算障碍物与车辆的距离。超声波传感器在近距离检测方面具有较高的精度和可靠性,能够为驾驶员提供准确的停车辅助信息,帮助车辆安全地停靠在停车位或避

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值