摘要
生成对抗网络(GAN)是近年来人工智能领域中备受瞩目的技术。本文深入剖析了 GAN 的基本原理,包括生成器、判别器的结构和训练过程,并详细介绍了不同类型的 GAN 变体,如 DCGAN、WGAN、CycleGAN 等。通过实际案例展示了 GAN 在图像生成、图像风格转换、数据增强等方面的应用,旨在帮助机器学习爱好者和开发者更好地掌握这一强大的生成模型技术。
一、引言
在过去的几年里,深度学习在诸多领域取得了突破性的进展。其中,生成对抗网络(Generative Adversarial Networks,GAN)作为一种极具创新性的生成模型,引起了广泛的关注。GAN 由 Goodfellow 等人于 2014 年首次提出,它通过对抗学习的方式,让两个神经网络相互博弈,从而生成逼真的数据样本。与传统的生成模型相比,GAN 具有无需复杂的概率计算、能够生成高分辨率且多样化的数据等优势,在图像生成、图像风格转换、数据增强、视频生成、语音合成等众多领域展现出了巨大的潜力。
二、GAN 的基本原理
(一)生成器与判别器
GAN 由两个主要部分组成:生成器(Generator)和判别器(Discriminator)。
生成器的作用是生成假的数据样本,它通常接收一个随机噪声向量作为输入,并通过一系列的神经网络层将其转换为与真实数据相似的输出。例如,在图像生成任务中,生成器的输入可能是一个 100 维的随机噪声向量