强化学习在自动驾驶领域的最新进展与挑战

强化学习作为机器学习的一个重要分支,在自动驾驶领域发挥着关键作用,通过让智能体与环境进行交互并根据奖励反馈来学习最优决策策略,为自动驾驶车辆在复杂环境下的导航、控制和决策提供了有效的解决方案。以下是其在该领域的一些最新进展与挑战。

最新进展

  • 端到端自动驾驶技术的突破2:商汤绝影发布了行业首个「与世界模型协同交互的端到端自动驾驶路线 R - UniAD」。该路线通过构建世界模型生成在线交互的仿真环境,以此进行端到端模型的强化学习训练。其采用多阶段强化学习的训练方法,先依靠冷启动数据通过模仿学习进行云端的端到端自动驾驶大模型训练,然后基于强化学习让云端的端到端大模型与世界模型协同交互,持续提升端到端模型的性能,最后通过高效蒸馏的方式实现高性能端到端自动驾驶小模型的车端部署。据测算,这种小样本多阶段学习的技术路线能让端到端自动驾驶的数据需求降低一个数量级,有望使车企合作伙伴超越特斯拉 FSD,实现超越人类的驾驶表现。
  • 强化学习规划器的创新6:菜鸟研发出业内首个自动驾驶高性能大规模强化学习规划器 CarPlanner。该规划器解决了强化学习在轨迹规划方面存在的效率低下和性能不足的问题,在 nuPlan 数据集上首次证明基于强化学习的规划器可以超越基于模仿学习和规则的方案,提升了无人车应对复杂场景的能力。此外,菜鸟无人车技术团队与新加坡南洋理工大学联合研究的新型端到端自动驾驶系统(PAD),通过生成高质量的规划轨迹提高自动驾驶车辆的效率和安全性,并在 NAVSIM 平台榜单中登顶。
  • 多智能
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值