摘要: 本文详细介绍了计算机视觉中 Transformer 架构的原理,包括其核心组件如自注意力机制等,并通过多个应用案例展示了 Transformer 在图像分类、目标检测、语义分割等任务中的卓越表现。同时,对 Transformer 架构在计算机视觉领域的发展趋势和面临的挑战进行了探讨。
关键词:计算机视觉;Transformer 架构;自注意力机制
一、引言
计算机视觉作为人工智能领域的重要分支,旨在让计算机理解和解释图像或视频中的内容。近年来,Transformer 架构在自然语言处理领域取得了巨大成功,并逐渐被引入到计算机视觉领域,为计算机视觉任务带来了新的突破和发展机遇。Transformer 架构以其强大的特征提取能力和对长序列数据的处理优势,在图像、视频等视觉数据的处理中展现出了独特的魅力。
二、Transformer 架构原理
(一)自注意力机制
自注意力机制是 Transformer 架构的核心。它允许模型在处理每个位置的信息时,能够同时考虑到输入序列中其他位置的信息,从而自适应地计算每个位置的重要性权重。 给定一个输入序列\(x = (x_1, x_2, \cdots, x_n)\),其中\(x_i\)是第i个位置的向量表示。自注意力机制首先通过三个线性变换将输入映射到三个不同的空间,得到查询向量Q、键向量K和值向量V: \(Q = W_qx, K = W_kx, V = W_vx\) 其中\(W_q\)、\(W_k\)和\(W_v\)是可学习的权重矩阵。然后,通过计算查询向量与键向量的点积,并进行归一化,得到注意力权重: \(\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V\) 其中\(d_k\)是键向量的维度。这个过程可以并行计算,大大提高了计算效率。
(二)多头注意力机制
为了进一步提高模型的表示能力,Transformer 采用了多头注意力机制。它是在自注