一、引言
1.1 研究背景
在科技迅猛发展的当下,人工智能(Artificial Intelligence,简称 AI)已成为推动各行业变革与创新的关键力量。从智能家居系统为日常生活带来便捷,到医疗领域借助 AI 辅助诊断提高疾病检测的准确性;从金融行业利用 AI 算法进行风险评估与交易预测,到交通领域自动驾驶技术的逐步探索与应用,AI 的身影无处不在。它正以前所未有的速度重塑着社会经济结构,改变着人们的生产生活方式。
随着 AI 技术的不断迭代升级,其应用场景持续拓展,从最初简单的图像识别、语音识别,逐渐向复杂的决策系统、智能机器人等领域延伸。例如,在工业生产中,智能机器人能够精准完成复杂的装配任务,大幅提高生产效率与产品质量;在教育领域,个性化学习平台借助 AI 分析学生学习数据,为每个学生量身定制学习路径。然而,AI 技术的快速发展也引发了一系列社会关注与讨论。一方面,它为社会发展带来了巨大的机遇,有望解决诸多长期以来困扰人类的难题,推动经济增长与社会进步;另一方面,其潜在的风险与挑战也不容忽视,如就业结构调整带来的岗位替代、数据隐私安全问题、算法偏见导致的不公平现象以及伦理道德困境等。公众作为 AI 技术应用的直接或间接参与者,他们对 AI 的认知与接受度不仅影响着自身对 AI 产品和服务的使用意愿,还在一定程度上决定了 AI 技术在社会中的推广速度与应用深度,进而关系到 AI 产业的可持续发展以及整个社会的稳定与进步。因此,深入了解公众对人工智能的认知与接受度状况,剖析其影响因素,并提出针对性的提升策略,具有重要的现实意义与社会价值。
1.2 研究目的与意义
本研究旨在全面、系统地调查公众对人工智能的认知与接受度情况。通过收集和分析大量一手数据,深入了解不同年龄、性别、地域、教育程度以及职业背景的公众对 AI 的认知水平、态度倾向、接受程度以及使用体验等方面的差异。在此基础上,探究影响公众认知与接受度的关键因素,为相关企业、政府部门以及社会各界制定合理的 AI 推广策略、政策法规以及科普教育方案提供科学依据。
对于企业而言,了解公众对 AI 的认知与接受度有助于精准定位市场需求,优化产品设计与服务模式,提高 AI 产品和服务的市场竞争力。通过掌握公众对不同 AI 应用场景的需求偏好以及对产品功能、价格、安全性等方面的期望,企业能够有针对性地进行研发投入,开发出更符合公众需求的 AI 产品,从而提高用户满意度与忠诚度。
从政府部门角度来看,本研究结果可为制定科学合理的 AI 产业发展政策、监管措施以及科普教育规划提供参考。政府可以依据公众对 AI 的认知现状,加大科普宣传力度,提高全民 AI 素养;根据公众对 AI 潜在风险的担忧,完善相关法律法规,加强数据隐私保护与算法监管,营造健康、安全的 AI 发展环境,推动 AI 技术在社会中的广泛应用与可持续发展。
在社会层面,增进公众对 AI 的正确认知与积极接受度,有助于减少因对新技术的误解和恐惧而产生的社会阻力,促进社会各界对 AI 技术的理性讨论与合作。提高公众对 AI 技术的认知水平,能够激发公众对科技创新的兴趣与热情,培养更多具备 AI 相关知识和技能的人才,为 AI 产业的发展提供坚实的人才支撑,推动整个社会向智能化时代迈进。
二、研究设计与方法
2.1 问卷设计
问卷设计是本研究的关键环节之一,旨在全面、准确地收集公众对人工智能的认知与接受度相关信息。问卷内容涵盖多个维度,包括个人基本信息、对 AI 的认知渠道与程度、接触和使用 AI 产品或服务的情况、对 AI 的态度与看法、对 AI 应用领域的了解与期望以及对 AI 潜在风险的认知与担忧等。
在个人基本信息部分,收集了受访者的年龄、性别、所在地区、教育程度、职业以及收入水平等信息,以便后续分析不同特征群体在对 AI 认知与接受度方面的差异。
关于对 AI 的认知渠道,设置了多种常见渠道选项,如电视、网络、报纸杂志、社交媒体、学校教育、工作培训以及亲友介绍等,旨在了解公众获取 AI 信息的主要途径。认知程度方面,通过一系列问题考察受访者对 AI 基本概念、发展历程、主要技术以及应用领域的了解程度,例如 “您是否知道人工智能的主要研究领域包括机器学习、计算机视觉和自然语言处理?”“您能列举出至少三个当前已广泛应用人工智能技术的行业吗?”
对于接触和使用 AI 产品或服务的情况,详细询问了受访者是否使用过各类 AI 产品,如智能语音助手(如 Siri、小爱同学、天猫精灵等)、智能家居设备(智能门锁、智能摄像头、智能家电等)、智能推荐系统(在电商平台、视频网站等使用的个性化推荐服务)、自动驾驶辅助系统(如有)以及 AI 医疗诊断工具(如有)等。对于使用过的产品,进一步了解使用频率、使用体验(包括满意度、便捷性、功能性等方面)以及遇到的问题。
在对 AI 的态度与看法维度,设计了一系列态度量表问题,如 “您认为人工智能对人类社会的发展总体上是积极的还是消极的?”“您是否担心人工智能会取代人类工作?”“您是否愿意在日常生活和工作中更多地使用人工智能技术?” 等,采用李克特量表形式,让受访者从 “非常同意” 到 “非常不同意” 之间进行选择,以便量化分析公众对 AI 的态度倾向。
针对 AI 应用领域,询问受访者对不同领域 AI 应用的了解程度(如医疗、交通、教育、金融、工业制造、娱乐等)以及对这些领域未来 AI 发展的期望。例如,“您认为人工智能在医疗领域最有潜力解决哪些问题?”“您期望未来人工智能在交通领域实现哪些突破?”
最后,在对 AI 潜在风险的认知与担忧部分,涉及数据隐私安全、算法偏见、就业结构变化、伦理道德问题以及技术失控等方面。例如,“您是否担心在使用 AI 产品或服务时个人隐私数据会被泄露?”“您认为人工智能的发展是否可能导致算法歧视,对某些群体不公平?” 通过这些问题,全面了解公众对 AI 潜在风险的关注焦点与担忧程度。
为确保问卷的科学性与有效性,在正式发放问卷之前,进行了预调查。选取了一小部分具有代表性的受访者进行问卷测试,收集他们对问卷内容、问题表述、答题难度以及问卷整体结构的反馈意见。根据预调查结果,对问卷进行了优化和完善,对一些表述模糊或容易引起误解的问题进行了修改,调整了部分问题的顺序,使其逻辑更加清晰,同时对问卷的排版进行了美化,提高问卷的可读性与答题体验。
2.2 样本选择与数据收集
本研究采用分层抽样与随机抽样相结合的方法进行样本选择,以确保样本具有广泛的代表性。首先,根据我国不同地区的经济发展水平、人口密度以及信息化程度等因素,将全国划