在机器学习领域,构建一个模型仅仅是开始,更重要的是评估模型的性能,以确定其是否满足实际应用需求。评估指标就像是衡量模型优劣的 “标尺”,它们从不同角度反映模型的表现。从最基础的准确率,到综合考虑查准率和查全率的 F1 分数,每一个指标都有其独特的含义和适用场景。本文将深入剖析这些评估指标,帮助读者全面理解并正确应用它们。
一、基础概念与混淆矩阵
在深入探讨具体评估指标之前,我们需要先了解两个重要的基础概念:分类任务和混淆矩阵。
(一)分类任务
分类任务是机器学习中常见的任务类型之一,它的目标是将输入数据划分到不同的类别中。例如,判断一封邮件是垃圾邮件还是正常邮件,识别图像中的物体是猫还是狗等。根据类别数量的不同,分类任务可分为二分类任务和多分类任务。二分类任务只有两个类别,如 “是” 与 “否”、“正” 与 “负”;多分类任务则包含三个及以上的类别,如手写数字识别(0 - 9 共 10 个类别)。
(二)混淆矩阵
混淆矩阵是理解和计算各种分类评估指标的核心工具。以二分类任务为例,混淆矩阵是一个 2×2 的矩阵,它记录了模型预测结果与真实标签之间的关系。矩阵的四个元素分别为:
- 真正例(True Positive,TP):模型预测为正类,且实际也为正类的样本数量。
- 假正例(False Positive,FP):模型预测为正类,但实际为负类的样本数量。
- 真负例(True Negative,TN):模型预测为负类,