WaveGrad入门学习资料汇总 - 基于梯度估计的高质量语音合成模型

WaveGrad简介

WaveGrad是一种用于语音波形生成的条件模型,通过估计数据密度的梯度来生成高质量语音。它基于分数匹配和扩散概率模型的先前工作,从高斯白噪声信号开始,通过基于梯度的采样器迭代细化信号,最终生成高保真度的语音波形。

WaveGrad模型具有以下特点:

  • 非自回归模型,推理时只需固定次数的迭代
  • 可以通过调整迭代次数来权衡推理速度和样本质量
  • 使用仅6次迭代即可生成高保真音频样本
  • 在音频质量方面弥合了非自回归模型和自回归模型之间的差距

WaveGrad架构图

学习资源

1. 论文

2. 代码实现

3. 教程与博客

4. 音频样本

  • WaveGrad项目页面 提供了使用不同迭代次数生成的音频样本,可以直观感受模型效果。

5. 预训练模型

实践指南

  1. 克隆官方代码仓库:

    git clone https://github.com/ivanvovk/WaveGrad.git
    cd WaveGrad
    
  2. 安装依赖:

    pip install -r requirements.txt
    
  3. 准备数据:

    • 制作训练和测试的音频文件列表
    • configs文件夹中创建配置文件
  4. 训练模型:

    sh runs/train.sh
    
  5. 推理生成音频:

    sh runs/inference.sh -c <your-config> -ch <your-checkpoint> -ns <your-noise-schedule> -m <your-mel-filelist> -v "yes"
    

更多详细的训练和推理指南,请参考官方README

WaveGrad作为一种新型的语音合成模型,在高质量语音生成方面展现出了巨大潜力。希望本文汇总的学习资源能帮助读者快速入门并深入探索这一前沿技术。如果您对WaveGrad有任何问题或见解,欢迎在评论区留言讨论! 🎙️🔊

文章链接:www.dongaigc.com/a/wavegrad-introduction-resources

https://www.dongaigc.com/a/wavegrad-introduction-resources

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值