PostgresML简介
PostgresML是一个基于PostgreSQL数据库构建的完整机器学习平台。它的核心理念是将机器学习模型直接集成到数据库中,而不是将数据移动到模型所在的环境。这种"反向"的机器学习方法带来了许多实际的好处,彻底改变了我们对"数据库"概念的认知。
PostgresML的主要特点包括:
-
数据库内机器学习:它允许直接在PostgreSQL数据库内训练、部署和运行机器学习模型。这消除了在数据库和外部ML框架之间不断移动数据的需求,提高了效率并减少了每个步骤的延迟。
-
SQL API:如果你既喜欢SQL又喜欢机器学习,那么postgresml.org可能会成为你最喜欢的网站。该平台允许使用SQL SELECT语句来训练、微调和部署机器学习模型。对于没有广泛掌握多种机器学习框架知识的数据分析师和科学家来说,这个功能可能会彻底重新定义他们的日常工作流程。
-
预训练模型:PostgresML可以轻松集成HuggingFace,使其能够访问数百个预训练模型,如Llama、Falcon、Bert、Mistral等。
-
定制化和灵活性:PostgresML支持来自Scikit-learn、XGBoost、LGBM、PyTorch和TensorFlow的50多种算法。这使得你可以直接在数据库中训练和部署用于多种监督学习任务的ML模型。
-
与现有生态系统集成:由于PostgresML本质上是一个数据库,你可以在任何支持Postgres的环境中与之交互(基本上是任何地方)。该平台还为16种语言提供SDK,如果你觉得用SQL做ML太奇怪的话(JavaScript、Python和Rust支持最好)。