- 博客(12)
- 收藏
- 关注

原创 聊天机器人:基于 Encoder-Decoder 架构的生成式聊天机器人
大家好!作为一名和大家一样在编程路上慢慢摸索的开发者,我深知从零开始搭建一个聊天机器人时的迷茫与挑战。上面这些代码,是我一点点调试、修改、完善出来的成果 —— 它可能不够完美,也没有用到最前沿的技术,但每一行都凝结着实践中的思考。今天把它分享出来,就是希望能帮更多新手少走弯路,快速拥有一个属于自己的聊天机器人。本文所选用数据集是xiaohuangji50w_nofenci.conv,可前往进行下载。
2025-08-07 15:18:03
1061
原创 可扩散模型(Diffusion Models)详解:从原理到应用
设原始数据为 x₀(服从真实数据分布 p_data),前向扩散的每一步 t(从 1 到 T)都按如下规则添加噪声:εₜ₋₁ 是服从标准正态分布的噪声(ε ~ 𝒩(0, I));αₜ 是一个预设的 “保持系数”(通常在 0.995~1 之间),控制每一步保留的原始信息比例;为简化计算,定义累积系数 ᾱₜ = α₁・α₂・…・αₜ(ᾱ₀=1,ᾱ_T≈0)。可扩散模型通过 “前向加噪 - 反向去噪” 的思路,实现了对复杂数据分布的精准建模。
2025-08-10 15:51:45
966
原创 生成式 AI 详解:从原理到未来
生成式 AI 是一类能够从数据中学习规律,并生成全新、逼真内容的人工智能模型。与 “判别式 AI”(如分类模型、推荐系统,专注于判断和预测)不同,生成式 AI 的核心是建模数据的概率分布—— 通过学习真实数据(如图像、文本)的潜在规律,生成在统计意义上与原始数据相似但全新的内容。给定大量真实图片,生成式 AI 能创造出从未存在过的 “新图片”;学习海量对话数据后,能生成符合语言逻辑的 “新对话”;分析无数代码片段后,能写出可运行的 “新代码”。其本质是对 “可能性” 的建模。
2025-08-10 15:16:51
720
原创 如何设计神经网络
同时,将数据集分成了训练集和测试集,训练集用于训练神经网络,测试集用于评估训练好的神经网络的性能。这里,我们使用交叉熵损失函数来计算预测结果和真实标签之间的差距,使用随机梯度下降(SGD)优化器来更新神经网络的参数,使得损失逐渐降低。我们使用经典的 MNIST 数据集,它包含了大量手写数字的图片及其对应的标签。手写数字识别就是给定一张包含手写数字(0 - 9)的图片,让神经网络判断图片中的数字具体是几。通过在测试集上计算准确率,我们可以了解到这个神经网络在手写数字识别任务上的表现如何。
2025-08-10 09:06:03
908
原创 强化学习案例:基于 DQN 的迷宫导航智能
本文介绍了一个基于深度Q网络(DQN)的迷宫导航智能体系统。该系统由四个核心组件构成:经验回放缓冲区(ReplayBuffer)采用双端队列存储和采样经验,解决样本相关性;Q网络模型(DQN)使用三层全连接结构近似动作价值函数;自定义迷宫环境(MazeEnv)定义5x5网格空间和智能体交互规则;主训练逻辑实现DQN算法的核心流程,包括ε-贪婪策略、贝尔曼方程计算Q值等关键技术。该系统通过强化学习使智能体自主学习迷宫导航策略,最终找到从起点到终点的最优路径。完整的代码实现展示了DQN算法在实际问题中的应用过程
2025-08-09 09:13:51
995
原创 神经网络搜索(NAS)详解
卷积层选项:(输出通道数, 卷积核大小, 步长)# 包含4种不同配置的卷积层参数组合# 是否使用池化层:最大池化层或不使用# 激活函数选项:ReLU、Sigmoid、Tanh三种常用激活函数self.search_space = search_space # 搜索空间实例self.hidden_size = hidden_size # RNN隐藏层大小# 循环神经网络用于生成序列决策# 这里使用LSTM生成网络架构的决策序列input_size=1, # 简化输入:使用1维输入。
2025-08-08 21:22:23
1148
原创 多模态智能:打破模态壁垒,构建类人感知的 AI 系统
人类对世界的认知从未局限于单一感官 —— 我们通过眼睛观察图像、耳朵聆听声音、语言传递思想,多种信息渠道的协同作用,让我们能更全面、深刻地理解世界。在人工智能领域,这种 “多感官协同” 的能力被称为。它打破了文本、图像、语音等单一数据模态的界限,通过统一模型架构学习跨模态的语义关联,实现对复杂信息的协同理解、转换与生成,正推动 AI 从 “单任务工具” 向 “类人感知系统” 加速演进。
2025-08-08 16:31:11
708
原创 关于人工智能领域方面算法简析
AI 算法根据任务类型(分类、回归、聚类等)和数据特点(结构化、图像、文本等)选择,从经典的逻辑推理到现代的 Transformer、深度强化学习,算法的演进推动了 AI 在各领域的应用。实际场景中,常需结合多种算法(如集成学习、深度学习 + 强化学习)解决复杂问题。
2025-08-08 15:35:16
808
原创 注意力机制在自然语言处理上的使用
下面用具体例子和符号公式展示注意力机制如何提取语义特征,以 “我吃苹果”-->"I eat apple" 机器翻译为例,重点展示模型如何关注关键信息并融合语义。:用点积计算q1与k0,k1,k2的关联:假设结果为:[1.2,5.8,3.5](“eat” 与 “吃” 的 Key 最相似,得分最高)。
2025-08-08 09:25:32
561
原创 神经网络对一段话语义进行特征提取
神经网络对一段话语义的提取是一个,核心是通过多层网络结构捕捉词语、句子乃至篇章的语义关联。神经网络无法直接处理文字,需先将文本转化为数值向量,这一步是语义提取的基础。
2025-08-07 16:47:56
1103
原创 智能交互桌宠
本文将详细解析一个集成了图形界面交互、动画展示、语音识别、AI 对话和截图翻译功能的智能交互助手系统。该系统采用多模块设计,通过 Kivy 框架构建主交互界面,结合 PyQt5 和 Tkinter 实现功能扩展,为用户提供多样化的智能交互体验。GUI 框架:Kivy(主界面)、PyQt5(聊天界面)、Tkinter(翻译工具)AI 交互:通过 HTTP 请求与第三方 AI API 交互语音处理:speech_recognition(语音识别)、edge_tts(语音合成)图像处理。
2025-08-07 10:33:13
702
从零搭建的生成式聊天机器人
2025-08-13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人