- 博客(8)
- 收藏
- 关注
原创 Gauhuman论文复现总结
GauHuman是基于3D高斯泼溅(3D Gaussian Splatting)的动态人体重建框架,其核心创新在于规范空间表示和双四元数形变场。├── __init__.py # 渲染器入口├── gaussian_model.py # 3D高斯模型定义├── gaussian_renderer.py # 高斯渲染器├── scene/ # 场景管理├── utils/ # 工具函数└── external/ # 外部依赖(diff-gaussian-rasterization)
2025-12-05 23:24:21
392
原创 吴恩达机器学习 *正则化 过拟合问题
模型为线性(w1x+b ),对训练集拟合效果差,存在高偏差,如左图,因模型简单,无法捕捉数据复杂规律。选取合适的特征,缺点是可能会丢失部分有用的特征。
2025-08-02 19:45:37
294
原创 机器学习*octave基本操作,矢量
向量化实现,将参数更新转化为矩阵运算 Θ:=Θ−αδ ,其中 δ 是通过训练数据矩阵运算得到的梯度向量,避免循环,提升计算效率。的内容,包含 3999、3299 等 10 个数值,代表对数组元素的索引截取操作及结果。的数组(或向量)中提取第 1 到 10 个元素,赋值给变量。会在该子图绘图,用于多图布局展示。的维度(行数 × 列数 ),结果。用于控制绘图时坐标轴显示的区间。对应元素相乘(需同维度)是 3 行 2 列;(保持绘图窗口 )、
2025-07-01 23:03:57
1023
原创 吴恩达机器学习*多元梯度下降法+正规方程
hθ(x)=θTx=θ0x0+θ1x1+θ2x2+⋯+θnxn ,用于预测输出,θ 是参数向量,x 是特征向量:θ0,θ1,…,θn ,是 n+1 维向量,需学习确定以拟合数据:J(θ0,θ1,…,θn)=1\2m1∑i=1m(hθ(x(i))−y(i))2 ,衡量预测值与真实值 y(i) 误差,m 是样本数量,目标是最小化它。
2025-06-28 00:11:37
942
原创 吴恩达机器学习笔记*序言部分+监督/无监督学习
定义:对于某类任务 T 和性能度量 P,如果一个计算机程序在 任务T 上以 P 衡量的性能随着经验 E 而自我完善,那么我们称这个程序在从经验 E 中学习。(1)预测房价:通过许多面积对应的房价用线来拟合后,预测更多连续值输出。该流程为监督学习的流程 通过数据的训练后 再通过算法计算假设函数h。:eg基因的分类 (没有提前告知算法 机器自行进行分类)标记数据充足时能达到较高准确率 适用于多种预测任务。假设函数:hθ(x)=θ_0+θ_1x。分类问题:预测离散值输出。回归:y可以取任意值。
2025-04-16 15:05:54
356
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅