数据处理和分析之分类算法:梯度提升机(GradientBoosting):梯度提升机的超参数调优
数据处理和分析之分类算法:梯度提升机 (Gradient Boosting)
梯度提升机简介
梯度提升机的基本原理
梯度提升机(Gradient Boosting Machine, GBM)是一种迭代的决策树算法,用于解决分类和回归问题。其核心思想是通过构建一系列弱学习器(通常是决策树),并以梯度下降的方式逐步优化模型,最终将这些弱学习器组合成一个强学习器。GBM的工作流程如下:
- 初始化模型:通常从一个常数开始,作为所有预测的初始值。
- 计算残差:对于当前模型的预测,计算残差(即实际值与预测值之间的差异)。
- 拟合弱学习器:基于残差