数据处理和分析之分类算法:梯度提升机(GradientBoosting):梯度提升机的超参数调优

数据处理和分析之分类算法:梯度提升机(GradientBoosting):梯度提升机的超参数调优

在这里插入图片描述

数据处理和分析之分类算法:梯度提升机 (Gradient Boosting)

梯度提升机简介

梯度提升机的基本原理

梯度提升机(Gradient Boosting Machine, GBM)是一种迭代的决策树算法,用于解决分类和回归问题。其核心思想是通过构建一系列弱学习器(通常是决策树),并以梯度下降的方式逐步优化模型,最终将这些弱学习器组合成一个强学习器。GBM的工作流程如下:

  1. 初始化模型:通常从一个常数开始,作为所有预测的初始值。
  2. 计算残差:对于当前模型的预测,计算残差(即实际值与预测值之间的差异)。
  3. 拟合弱学习器:基于残差
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值