数据处理和分析之分类算法:支持向量机(SVM):SVM在生物信息学中的应用
数据处理和分析之分类算法:支持向量机 (SVM):SVM在生物信息学中的应用
简介
支持向量机(SVM)的基本概念
支持向量机(Support Vector Machine,简称SVM)是一种监督学习模型,主要用于分类和回归分析。SVM的基本思想是找到一个超平面,使得两类数据在该超平面上的投影间隔最大化。这个超平面被称为最大间隔超平面,而位于间隔边界上的数据点被称为支持向量。
原理
SVM通过构建一个决策边界,即超平面,来实现分类。对于线性可分的数据集,SVM寻找一个能够将数据集中的不同类别完全分开的超平面,同时使得这个超平面到最近的数据点的距离(即间隔)最大化。对于线性不可分的数据集,SVM通过引入核函数(Kernel Function)