数据处理和分析之分类算法:支持向量机(SVM):SVM在生物信息学中的应用

数据处理和分析之分类算法:支持向量机(SVM):SVM在生物信息学中的应用

在这里插入图片描述

数据处理和分析之分类算法:支持向量机 (SVM):SVM在生物信息学中的应用

简介

支持向量机(SVM)的基本概念

支持向量机(Support Vector Machine,简称SVM)是一种监督学习模型,主要用于分类和回归分析。SVM的基本思想是找到一个超平面,使得两类数据在该超平面上的投影间隔最大化。这个超平面被称为最大间隔超平面,而位于间隔边界上的数据点被称为支持向量。

原理

SVM通过构建一个决策边界,即超平面,来实现分类。对于线性可分的数据集,SVM寻找一个能够将数据集中的不同类别完全分开的超平面,同时使得这个超平面到最近的数据点的距离(即间隔)最大化。对于线性不可分的数据集,SVM通过引入核函数(Kernel Function)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值