数据处理和分析之数据预处理:缺失值处理在时间序列数据中的应用
时间序列数据简介
时间序列数据的定义
时间序列数据(Time Series Data)是指在一系列时间点上收集的数据点,这些数据点通常按照时间顺序排列,反映了某个或某些变量随时间变化的趋势。时间序列数据在金融、气象、环境科学、经济学、生物学、信号处理等领域中非常常见,例如股票价格、气温变化、人口增长、心电图信号等。
时间序列数据的分析和预测是数据科学中的一个重要分支,它帮助我们理解过去的数据模式,并基于这些模式对未来进行预测。然而,时间序列数据往往包含缺失值,这可能是由于设备故障、数据记录错误、人为疏忽等原因造成的。缺失值的存在会严重影响时间序列分析的准确性和可靠性,因此,缺失值处理(Missing Value Imputation)是时间序列数据预处理中的关键步骤。
时间序列数据的特性
时间序列数据