数据处理和分析之数据预处理:数据清洗与时间序列数据预处理
时间序列数据概述
时间序列数据的特点
时间序列数据(Time Series Data)是一种按时间顺序排列的数据,其中每个数据点都与一个时间戳关联。这种数据类型在金融、气象、工业监控、生物医学、交通等领域极为常见。时间序列数据的特点包括:
- 连续性:数据点通常按照固定的时间间隔连续记录。
- 趋势性:数据可能随时间呈现上升、下降或平稳的趋势。
- 季节性:数据可能表现出周期性的模式,如每天、每周、每月的规律。
- 随机性:数据中可能包含随机波动,这些波动没有明显的模式。
- 自相关性:当前数据点与过去的数据点之间可能存在相关性。
时间序列数据的应用场景
时间序列数