数据处理和分析之数据预处理:数据清洗效果评估与持续优化
数据处理和分析之数据预处理:数据清洗的重要性
数据质量对分析结果的影响
在数据科学和数据分析领域,数据质量是决定分析结果准确性和可靠性的重要因素。数据清洗,作为数据预处理的关键步骤,旨在提高数据质量,从而确保后续分析的有效性。数据质量问题可能包括但不限于:
- 缺失值:数据集中某些字段可能没有记录,这会影响分析的完整性。
- 异常值:数据中可能包含极端值,这些值可能由于测量错误或数据录入错误而出现,影响分析的准确性。
- 重复数据:数据集中可能有完全相同的记录,这会导致统计结果的偏差。
- 不一致的数据:数据可能在格式、单位或编码上不一致,这会增加数据处理的复杂性。
- 错误的数据ÿ