数据处理和分析之数据预处理:异常值处理(Outlier Detection):异常值的基本概念与类型
数据处理和分析之数据预处理:异常值处理 (Outlier Detection)
异常值的基本概念
异常值的定义
异常值(Outliers),在统计学中,指的是数据集中显著偏离其他观察值的数值。这些数值可能由于测量错误、数据录入错误、实验异常或数据生成过程中的随机波动等原因产生。异常值的存在可能会对数据分析的结果产生重大影响,因此在进行数据预处理时,检测并处理异常值是一项重要的任务。
异常值的影响
异常值对数据分析的影响主要体现在以下几个方面:
- 统计量偏差:异常值可能会导致平均值、标准差等统计量的计算结果偏离真实值,从而影响对数据集的描述和理解。
- 模型拟合问题:在构建预测模型