数据处理和分析之数据预处理:异常值处理(Outlier Detection):异常值的基本概念与类型

数据处理和分析之数据预处理:异常值处理(Outlier Detection):异常值的基本概念与类型

在这里插入图片描述

数据处理和分析之数据预处理:异常值处理 (Outlier Detection)

异常值的基本概念

异常值的定义

异常值(Outliers),在统计学中,指的是数据集中显著偏离其他观察值的数值。这些数值可能由于测量错误、数据录入错误、实验异常或数据生成过程中的随机波动等原因产生。异常值的存在可能会对数据分析的结果产生重大影响,因此在进行数据预处理时,检测并处理异常值是一项重要的任务。

异常值的影响

异常值对数据分析的影响主要体现在以下几个方面:

  • 统计量偏差:异常值可能会导致平均值、标准差等统计量的计算结果偏离真实值,从而影响对数据集的描述和理解。
  • 模型拟合问题:在构建预测模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值