音频信号处理中的机器学习应用
在音频信号处理领域,机器学习技术已经取得了显著的进展。从语音识别到音频分类,从音频生成到噪声抑制,机器学习的应用极大地提升了音频处理的能力和效率。本节将详细介绍机器学习在音频信号处理中的应用,包括基础原理、常见模型以及具体的应用案例。我们将通过具体的代码示例来说明如何实现这些应用。

1. 语音识别
1.1. 基础原理
语音识别(Speech Recognition)是指通过计算机自动将声音信号转换为文本的技术。它主要包含以下几个步骤:
- 预处理:对音频信号进行采样、量化、滤波等操作,以便于后续处理。