Assembly软件:Kulicke & Soffa二次开发_5.数据输入与输出

5. 数据输入与输出

在Assembly软件中,数据输入与输出是一个非常重要的环节。无论是从机器接收数据,还是将数据发送到其他系统或设备,数据的准确性和效率都是关键。本节将详细介绍如何在Kulicke & Soffa的Assembly软件中进行数据输入与输出的操作,并提供具体的代码示例和数据样例。

在这里插入图片描述

5.1 数据输入

数据输入是将外部数据导入到软件中进行处理的过程。在Kulicke & Soffa的Assembly软件中,数据输入通常涉及从文件、数据库、网络等来源获取数据。这些数据可以是工艺参数、机器状态、生产数据等。以下是几种常见的数据输入方法及其具体实现。

5.1.1 从文件读取数据

从文件读取数据是最常见的数据输入方式之一。Kulicke & Soffa的Assembly软件支持多种文件格式,如CSV、XML、JSON等。以下是一个从CSV文件读取数据的示例。

示例:从CSV文件读取数据

假设我们有一个CSV文件 input.csv,内容如下:


PartNumber,MachineID,ProcessTime,Quality

12345,A1,10.5,Good

67890,B2,12.3,Excellent

54321,C3,11.0,Good

我们可以使用Python脚本来读取这个文件并将其数据导入到Kulicke & Soffa的Assembly软件中。以下是一个示例代码:


import csv



# 定义文件路径

file_path = 'input.csv'



# 读取CSV文件

with open(file_path, mode='r', encoding='utf-8') as file:

    reader = csv.DictReader(file)

    for row in reader:

        part_number = row['PartNumber']

        machine_id = row['MachineID']

        process_time = float(row['ProcessTime'])

        quality = row['Quality']

        

        # 将数据导入到Assembly软件中

        import_data_to_assembly_software(part_number, machine_id, process_time, quality)



def import_data_to_assembly_software(part_number, machine_id, process_time, quality):

    """

    将数据导入到Assembly软件中。

    

    :param part_number: 零件编号

    :param machine_id: 机器编号

    :param process_time: 加工时间

    :param quality: 质量等级

    """

    # 这里假设有一个API来导入数据

    # 实际使用时需要替换为具体的API调用

    print(f"Importing data: PartNumber={part_number}, MachineID={machine_id}, ProcessTime={process_time}, Quality={quality}")

5.1.2 从数据库读取数据

从数据库读取数据是另一种常见的数据输入方式。Kulicke & Soffa的Assembly软件可以连接到多种数据库,如MySQL、PostgreSQL、SQL Server等。以下是一个从MySQL数据库读取数据的示例。

示例:从MySQL数据库读取数据

假设我们有一个MySQL数据库,表名为 production_data,结构如下:

Column NameData Type
PartNumberVARCHAR
MachineIDVARCHAR
ProcessTimeFLOAT
QualityVARCHAR

我们可以使用Python的 pymysql 库来读取这个表中的数据,并将其导入到Kulicke & Soffa的Assembly软件中。以下是一个示例代码:


import pymysql



# 定义数据库连接参数

db_config = {

    'host': '127.0.0.1',

    'port': 3306,

    'user': 'root',

    'password': 'password',

    'database': 'assembly_db'

}



# 连接到数据库

connection = pymysql.connect(**db_config)

cursor = connection.cursor()



# 执行查询

query = "SELECT PartNumber, MachineID, ProcessTime, Quality FROM production_data"

cursor.execute(query)



# 获取查询结果

rows = cursor.fetchall()

for row in rows:

    part_number = row[0]

    machine_id = row[1]

    process_time = float(row[2])

    quality = row[3]

    

    # 将数据导入到Assembly软件中

    import_data_to_assembly_software(part_number, machine_id, process_time, quality)



# 关闭数据库连接

cursor.close()

connection.close()



def import_data_to_assembly_software(part_number, machine_id, process_time, quality):

    """

    将数据导入到Assembly软件中。

    

    :param part_number: 零件编号

    :param machine_id: 机器编号

    :param process_time: 加工时间

    :param quality: 质量等级

    """

    # 这里假设有一个API来导入数据

    # 实际使用时需要替换为具体的API调用

    print(f"Importing data: PartNumber={part_number}, MachineID={machine_id}, ProcessTime={process_time}, Quality={quality}")

5.1.3 从网络读取数据

从网络读取数据是现代工业软件中常见的需求,特别是当数据来自远程服务器或云服务时。Kulicke & Soffa的Assembly软件支持通过HTTP、FTP等协议从网络获取数据。以下是一个从HTTP接口读取数据的示例。

示例:从HTTP接口读取数据

假设我们有一个HTTP接口 http://example.com/api/production_data,返回JSON格式的数据。我们可以使用Python的 requests 库来读取这个接口的数据,并将其导入到Kulicke & Soffa的Assembly软件中。以下是一个示例代码:


import requests



# 定义HTTP接口URL

url = 'http://example.com/api/production_data'



# 发送HTTP请求

response = requests.get(url)



# 检查请求是否成功

if response.status_code == 200:

    data = response.json()

    for item in data:

        part_number = item['PartNumber']

        machine_id = item['MachineID']

        process_time = float(item['ProcessTime'])

        quality = item['Quality']

        

        # 将数据导入到Assembly软件中

        import_data_to_assembly_software(part_number, machine_id, process_time, quality)

else:

    print(f"Failed to retrieve data: {response.status_code}")



def import_data_to_assembly_software(part_number, machine_id, process_time, quality):

    """

    将数据导入到Assembly软件中。

    

    :param part_number: 零件编号

    :param machine_id: 机器编号

    :param process_time: 加工时间

    :param quality: 质量等级

    """

    # 这里假设有一个API来导入数据

    # 实际使用时需要替换为具体的API调用

    print(f"Importing data: PartNumber={part_number}, MachineID={machine_id}, ProcessTime={process_time}, Quality={quality}")

5.2 数据输出

数据输出是将处理后的数据从软件中导出到外部系统或设备的过程。在Kulicke & Soffa的Assembly软件中,数据输出通常涉及将数据写入文件、数据库、网络等目标。以下是一些常见的数据输出方法及其具体实现。

5.2.1 将数据写入文件

将数据写入文件是最常见的数据输出方式之一。Kulicke & Soffa的Assembly软件支持多种文件格式,如CSV、XML、JSON等。以下是一个将数据写入CSV文件的示例。

示例:将数据写入CSV文件

假设我们有一些处理后的数据,需要将其写入一个CSV文件 output.csv。以下是一个示例代码:


import csv



# 定义文件路径

file_path = 'output.csv'



# 处理后的数据

data = [

    {'PartNumber': '12345', 'MachineID': 'A1', 'ProcessTime': 10.5, 'Quality': 'Good'},

    {'PartNumber': '67890', 'MachineID': 'B2', 'ProcessTime': 12.3, 'Quality': 'Excellent'},

    {'PartNumber': '54321', 'MachineID': 'C3', 'ProcessTime': 11.0, 'Quality': 'Good'}

]



# 写入CSV文件

with open(file_path, mode='w', encoding='utf-8', newline='') as file:

    writer = csv.DictWriter(file, fieldnames=['PartNumber', 'MachineID', 'ProcessTime', 'Quality'])

    writer.writeheader()

    for row in data:

        writer.writerow(row)

5.2.2 将数据写入数据库

将数据写入数据库是另一种常见的数据输出方式。Kulicke & Soffa的Assembly软件可以连接到多种数据库,如MySQL、PostgreSQL、SQL Server等。以下是一个将数据写入MySQL数据库的示例。

示例:将数据写入MySQL数据库

假设我们有一个MySQL数据库,表名为 processed_data,结构如下:

Column NameData Type
PartNumberVARCHAR
MachineIDVARCHAR
ProcessTimeFLOAT
QualityVARCHAR

我们可以使用Python的 pymysql 库来将数据写入这个表中。以下是一个示例代码:


import pymysql



# 定义数据库连接参数

db_config = {

    'host': '127.0.0.1',

    'port': 3306,

    'user': 'root',

    'password': 'password',

    'database': 'assembly_db'

}



# 处理后的数据

data = [

    {'PartNumber': '12345', 'MachineID': 'A1', 'ProcessTime': 10.5, 'Quality': 'Good'},

    {'PartNumber': '67890', 'MachineID': 'B2', 'ProcessTime': 12.3, 'Quality': 'Excellent'},

    {'PartNumber': '54321', 'MachineID': 'C3', 'ProcessTime': 11.0, 'Quality': 'Good'}

]



# 连接到数据库

connection = pymysql.connect(**db_config)

cursor = connection.cursor()



# 插入数据

for item in data:

    part_number = item['PartNumber']

    machine_id = item['MachineID']

    process_time = item['ProcessTime']

    quality = item['Quality']

    

    query = "INSERT INTO processed_data (PartNumber, MachineID, ProcessTime, Quality) VALUES (%s, %s, %s, %s)"

    cursor.execute(query, (part_number, machine_id, process_time, quality))



# 提交事务

connection.commit()



# 关闭数据库连接

cursor.close()

connection.close()

5.2.3 将数据发送到网络

将数据发送到网络是现代工业软件中常见的需求,特别是当数据需要发送到远程服务器或云服务时。Kulicke & Soffa的Assembly软件支持通过HTTP、FTP等协议将数据发送到网络目标。以下是一个将数据发送到HTTP接口的示例。

示例:将数据发送到HTTP接口

假设我们有一个HTTP接口 http://example.com/api/submit_data,可以接收JSON格式的数据。我们可以使用Python的 requests 库来将数据发送到这个接口。以下是一个示例代码:


import requests



# 定义HTTP接口URL

url = 'http://example.com/api/submit_data'



# 处理后的数据

data = [

    {'PartNumber': '12345', 'MachineID': 'A1', 'ProcessTime': 10.5, 'Quality': 'Good'},

    {'PartNumber': '67890', 'MachineID': 'B2', 'ProcessTime': 12.3, 'Quality': 'Excellent'},

    {'PartNumber': '54321', 'MachineID': 'C3', 'ProcessTime': 11.0, 'Quality': 'Good'}

]



# 发送HTTP请求

response = requests.post(url, json=data)



# 检查请求是否成功

if response.status_code == 200:

    print("Data submitted successfully")

else:

    print(f"Failed to submit data: {response.status_code}")

5.2.4 数据输出的注意事项

在进行数据输出时,需要注意以下几点:

  1. 数据格式:确保输出的数据格式符合目标系统的要求,例如CSV文件的分隔符、JSON文件的结构等。

  2. 数据一致性:确保输出的数据与处理后的数据一致,避免数据丢失或错误。

  3. 错误处理:在数据输出过程中,可能会遇到网络中断、文件写入失败等问题,需要进行适当的错误处理,确保数据的完整性和可靠性。

  4. 性能优化:对于大量数据的输出,需要考虑性能优化,例如批量插入数据库、异步发送网络请求等。

5.3 实时数据处理

在工业生产中,实时数据处理是非常重要的。Kulicke & Soffa的Assembly软件支持实时数据的输入与输出,以确保生产过程的连续性和高效性。以下是一个实时数据处理的示例。

5.3.1 实时数据输入

实时数据输入通常涉及从传感器、PLC等设备实时获取数据。以下是一个从PLC实时读取数据的示例。

示例:从PLC实时读取数据

假设我们使用 pycomm3 库来从PLC实时读取数据。以下是一个示例代码:


from pycomm3 import LogixDriver



# 定义PLC连接参数

plc_ip = '192.168.1.100'



# 连接到PLC

with LogixDriver(plc_ip) as plc:

    # 读取PLC中的数据

    part_number = plc.read('PartNumber').value

    machine_id = plc.read('MachineID').value

    process_time = plc.read('ProcessTime').value

    quality = plc.read('Quality').value

    

    # 将数据导入到Assembly软件中

    import_data_to_assembly_software(part_number, machine_id, process_time, quality)



def import_data_to_assembly_software(part_number, machine_id, process_time, quality):

    """

    将数据导入到Assembly软件中。

    

    :param part_number: 零件编号

    :param machine_id: 机器编号

    :param process_time: 加工时间

    :param quality: 质量等级

    """

    # 这里假设有一个API来导入数据

    # 实际使用时需要替换为具体的API调用

    print(f"Importing data: PartNumber={part_number}, MachineID={machine_id}, ProcessTime={process_time}, Quality={quality}")

5.3.2 实时数据输出

实时数据输出通常涉及将处理后的数据实时发送到其他系统或设备。以下是一个将数据实时发送到MQTT服务器的示例。

示例:将数据实时发送到MQTT服务器

假设我们使用 paho-mqtt 库来将数据实时发送到MQTT服务器。以下是一个示例代码:


import paho.mqtt.client as mqtt



# 定义MQTT连接参数

mqtt_broker = '192.168.1.101'

mqtt_port = 1883

mqtt_topic = 'assembly/production_data'



# 处理后的数据

data = {'PartNumber': '12345', 'MachineID': 'A1', 'ProcessTime': 10.5, 'Quality': 'Good'}



# 定义MQTT客户端

client = mqtt.Client()



# 连接到MQTT服务器

client.connect(mqtt_broker, mqtt_port)



# 发送数据

client.publish(mqtt_topic, json.dumps(data))



# 断开连接

client.disconnect()

5.3.3 实时数据处理的注意事项

在进行实时数据处理时,需要注意以下几点:

  1. 数据延迟:确保数据的实时性,避免数据延迟导致生产过程的中断。

  2. 数据频率:根据生产过程的需求,合理设置数据的采集和发送频率。

  3. 错误处理:在实时数据处理过程中,可能会出现连接中断、数据丢失等问题,需要进行适当的错误处理,确保系统的稳定性和可靠性。

  4. 性能优化:对于高频率的数据处理,需要考虑性能优化,例如使用多线程、异步处理等。

5.4 数据验证与清洗

在数据输入与输出过程中,数据验证和清洗是非常重要的步骤。验证数据的正确性和完整性,可以避免后续处理中的错误;清洗数据可以去除无效或错误的数据,提高数据的质量。以下是一些常见的数据验证和清洗方法及其具体实现。

5.4.1 数据验证

数据验证通常涉及检查数据的格式、范围和一致性。验证数据的正确性和完整性可以避免后续处理中的错误。以下是一个数据验证的示例。

示例:数据验证

假设我们需要验证从CSV文件读取的数据是否符合要求。以下是一个示例代码:


import csv



# 定义文件路径

file_path = 'input.csv'



# 读取CSV文件

with open(file_path, mode='r', encoding='utf-8') as file:

    reader = csv.DictReader(file)

    for row in reader:

        part_number = row['PartNumber']

        machine_id = row['MachineID']

        process_time = row['ProcessTime']

        quality = row['Quality']

        

        # 验证数据

        if validate_data(part_number, machine_id, process_time, quality):

            # 将数据导入到Assembly软件中

            import_data_to_assembly_software(part_number, machine_id, float(process_time), quality)

        else:

            print(f"Invalid data: {row}")



def validate_data(part_number, machine_id, process_time, quality):

    """

    验证数据的正确性和完整性。

    

    :param part_number: 零件编号

    :param machine_id: 机器编号

    :param process_time: 加工时间

    :param quality: 质量等级

    :return: 数据是否有效

    """

    # 检查所有字段是否非空

    if not part_number or not machine_id or not process_time or not quality:

        return False

    

    # 检查加工时间是否为浮点数

    if not process_time.replace('.', '', 1).isdigit():

        return False

    

    # 检查质量等级是否在预定义的范围内

    if quality not in ['Good', 'Excellent', 'Poor']:

        return False

    

    return True



def import_data_to_assembly_software(part_number, machine_id, process_time, quality):

    """

    将数据导入到Assembly软件中。

    

    :param part_number: 零件编号

    :param machine_id: 机器编号

    :param process_time: 加工时间

    :param quality: 质量等级

    """

    # 这里假设有一个API来导入数据

    # 实际使用时需要替换为具体的API调用

    print(f"Importing data: PartNumber={part_number}, MachineID={machine_id}, ProcessTime={process_time}, Quality={quality}")

5.4.2 数据清洗

数据清洗是指去除或修正无效、错误或不一致的数据,以提高数据的质量。以下是一个数据清洗的示例。

示例:数据清洗

假设我们需要从CSV文件中读取数据并进行清洗,去除加工时间超过20秒的记录。以下是一个示例代码:


import csv



# 定义文件路径

file_path = 'input.csv'

cleaned_file_path = 'cleaned_input.csv'



# 读取CSV文件

with open(file_path, mode='r', encoding='utf-8') as file:

    reader = csv.DictReader(file)

    cleaned_data = []

    for row in reader:

        part_number = row['PartNumber']

        machine_id = row['MachineID']

        process_time = row['ProcessTime']

        quality = row['Quality']

        

        # 验证数据

        if validate_data(part_number, machine_id, process_time, quality):

            process_time_float = float(process_time)

            # 清洗数据:去除加工时间超过20秒的记录

            if process_time_float <= 20.0:

                cleaned_data.append(row)

            else:

                print(f"Cleaning data: {row} (ProcessTime > 20)")

        else:

            print(f"Invalid data: {row}")



# 写入清洗后的数据到新的CSV文件

with open(cleaned_file_path, mode='w', encoding='utf-8', newline='') as file:

    writer = csv.DictWriter(file, fieldnames=['PartNumber', 'MachineID', 'ProcessTime', 'Quality'])

    writer.writeheader()

    for row in cleaned_data:

        writer.writerow(row)

5.4.3 数据验证与清洗的注意事项

在进行数据验证和清洗时,需要注意以下几点:

  1. 格式检查:确保数据的格式符合预期,例如字符串长度、数字范围等。

  2. 范围检查:确保数据在合理的范围内,例如加工时间不应超过某个阈值。

  3. 一致性检查:确保数据的一致性,例如关联字段的值是否匹配。

  4. 错误处理:在数据验证和清洗过程中,可能会出现各种错误,需要进行适当的错误处理,确保系统的稳定性和可靠性。

  5. 性能优化:对于大量数据的验证和清洗,需要考虑性能优化,例如批量处理、使用高效的算法等。

5.5 数据安全

在数据输入与输出过程中,数据安全是不可忽视的重要环节。确保数据的安全性可以防止数据泄露、篡改和丢失,保护企业的核心资产。以下是一些常见的数据安全措施及其具体实现。

5.5.1 数据加密

数据加密是指在数据传输过程中对数据进行加密,以防止数据在传输过程中被窃取或篡改。以下是一个使用HTTPS进行数据传输的示例。

示例:使用HTTPS进行数据传输

假设我们有一个HTTPS接口 https://example.com/api/production_data,可以接收JSON格式的数据。我们可以使用Python的 requests 库来将数据发送到这个接口。以下是一个示例代码:


import requests



# 定义HTTPS接口URL

url = 'https://example.com/api/production_data'



# 处理后的数据

data = [

    {'PartNumber': '12345', 'MachineID': 'A1', 'ProcessTime': 10.5, 'Quality': 'Good'},

    {'PartNumber': '67890', 'MachineID': 'B2', 'ProcessTime': 12.3, 'Quality': 'Excellent'},

    {'PartNumber': '54321', 'MachineID': 'C3', 'ProcessTime': 11.0, 'Quality': 'Good'}

]



# 发送HTTP请求

response = requests.post(url, json=data, verify=True)



# 检查请求是否成功

if response.status_code == 200:

    print("Data submitted successfully")

else:

    print(f"Failed to submit data: {response.status_code}")

5.5.2 数据备份

数据备份是指将数据定期或实时备份到多个存储位置,以防止数据丢失。以下是一个将数据备份到本地文件的示例。

示例:将数据备份到本地文件

假设我们有一些处理后的数据,需要将其备份到一个本地文件 backup.csv。以下是一个示例代码:


import csv



# 定义文件路径

file_path = 'output.csv'

backup_file_path = 'backup.csv'



# 从输出文件读取数据

with open(file_path, mode='r', encoding='utf-8') as file:

    reader = csv.DictReader(file)

    data = [row for row in reader]



# 写入备份文件

with open(backup_file_path, mode='w', encoding='utf-8', newline='') as file:

    writer = csv.DictWriter(file, fieldnames=['PartNumber', 'MachineID', 'ProcessTime', 'Quality'])

    writer.writeheader()

    for row in data:

        writer.writerow(row)

5.5.3 数据访问控制

数据访问控制是指限制对数据的访问权限,确保只有授权用户或系统可以访问数据。以下是一个使用数据库访问控制的示例。

示例:使用数据库访问控制

假设我们在MySQL数据库中使用用户权限来控制数据访问。以下是一个示例代码:


import pymysql



# 定义数据库连接参数

db_config = {

    'host': '127.0.0.1',

    'port': 3306,

    'user': 'user1',

    'password': 'user1_password',

    'database': 'assembly_db'

}



# 连接到数据库

connection = pymysql.connect(**db_config)

cursor = connection.cursor()



# 执行查询

query = "SELECT PartNumber, MachineID, ProcessTime, Quality FROM production_data"

cursor.execute(query)



# 获取查询结果

rows = cursor.fetchall()

for row in rows:

    part_number = row[0]

    machine_id = row[1]

    process_time = float(row[2])

    quality = row[3]

    

    # 将数据导入到Assembly软件中

    import_data_to_assembly_software(part_number, machine_id, process_time, quality)



# 提交事务

connection.commit()



# 关闭数据库连接

cursor.close()

connection.close()



def import_data_to_assembly_software(part_number, machine_id, process_time, quality):

    """

    将数据导入到Assembly软件中。

    

    :param part_number: 零件编号

    :param machine_id: 机器编号

    :param process_time: 加工时间

    :param quality: 质量等级

    """

    # 这里假设有一个API来导入数据

    # 实际使用时需要替换为具体的API调用

    print(f"Importing data: PartNumber={part_number}, MachineID={machine_id}, ProcessTime={process_time}, Quality={quality}")

5.5.4 数据安全的注意事项

在进行数据安全措施时,需要注意以下几点:

  1. 加密算法:选择合适的加密算法,确保数据在传输过程中的安全性。

  2. 备份策略:制定合理的备份策略,定期备份数据,并确保备份数据的完整性和可恢复性。

  3. 访问控制:严格控制数据的访问权限,确保只有授权用户或系统可以访问数据。

  4. 审计日志:记录数据访问和操作的日志,以便于审计和追踪。

  5. 合规性:确保数据处理和存储符合相关法律法规和行业标准。

5.6 总结

数据输入与输出是Kulicke & Soffa的Assembly软件中非常重要的环节。通过从文件、数据库、网络等来源获取数据,并将处理后的数据导出到相应的目标,可以确保生产过程的连续性和高效性。在数据输入与输出过程中,数据验证和清洗是提高数据质量的关键步骤,而数据安全措施则是保护企业核心资产的重要手段。希望本节的内容能够帮助用户更好地理解和使用Kulicke & Soffa的Assembly软件中的数据输入与输出功能。

校园失物招领微信小程序源码, 失物招领小程序主要为解决大学生时常丢失物品而且很难找回以及归还过程繁琐不方便的问题, 传统的失物招领方式不同,该款校园失误招领小程序拥有快捷发布寻物启事和失误找领功能, 快速查找、极速归还、高效沟通、防误领冒领等功能, 在开发校园失物招领小程序前用户访谈发现有近40的同学校园内频繁丢失物品、证件、校园卡等, 数码产品、日用品等,丢失区域主要发生在教学楼、图书馆和食堂。 拾领校园失物招领小程序继承了寻物启事和失物招领,丢失物品或拾取物品都可发布帖子, 首页的横幅滚动公告展示通知公告等,banner图片化的方式更具有视觉吸引力, 最新信息可显示最近发布的招领信息或寻物信息,更加方便快捷的展示信息, 用户可通过首页的发布按钮发布帖子,发布者只需填写物品的相关信息,类别、地点等相关信息, 并且可以填写手机号开启认领验证,并可以一键生成二维码分享或分享至群聊和朋友圈。 列表内可以筛选物品类别或精确搜索,物品详情里可展示物品的相关信息, 确认是自己的物品后可点击认领,然后验证信息,需填写物品的关键信息以作辨认, 防止冒领误领,物品详情页可生成二维码海报分享,还有即时的消息联系功能以提高沟通效率, 发布者还可选择放置在代收处,双方还可以通过拨打电话紧急联系,用于紧急情况,让失物找到主人, 个人中心可以管理发布的物品帖子,管理个人信息,包括昵称、默认学校、手机号的修改、 编辑发布的物品帖子、获取帮助等。帮助用户流畅的使用该小程序。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值