首先,咱们得找个搭档,这里我推荐requests
库,它就像个网络世界的邮递员,能把你的请求送到目的地。然后,我们还得有个BeautifulSoup
,它是个解析高手,能把网页的HTML语言翻译成我们能看懂的信息。
现在,让我们开始我们的爬虫之旅吧!
第一步:挑选目标
你得先找个目标,比如说,你在淘宝上看中了一个宝贝,但价格就像小孩子的脾气,说变就变。这时候,你就得用爬虫来帮你盯着价格了。
第二步:分析网页
你得像个侦探一样,去分析那个商品页面的HTML结构。打开浏览器的开发者工具,找到价格信息所在的标签,就像找到犯罪现场的线索一样。
第三步:编写爬虫
现在,让我们开始编写我们的爬虫。首先,我们要发送一个请求到商品页面,然后解析页面,找到价格信息。
import requests
from bs4 import BeautifulSoup
# 目标商品页面URL
url = 'https://item.taobao.com/item.htm?id=123456789'
# 发送请求
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
# 解析价格信息
price = soup.find('span', class_='tb-rmb').text
print(f'当前价格是:{price}')
第四步:获取历史价格
现在,我们要获取商品的历史价格。这通常需要一个API,比如淘宝的API。你得先注册成为开发者,然后获取你的appkey
和secret
。
import time
import hashlib
# 淘宝API的URL
api_url = 'https://eco.taobao.com/router/rest'
# 你的appkey和secret
appkey = '你的appkey'
secret = '你的secret'
# 构建请求参数
params = {
'method': 'taobao.tbk.dg.material.optional',
'app_key': appkey,
'sign_method': 'md5',
'timestamp': time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()),
'format': 'json',
'v': '2.0',
'adzone_id': '你的adzone_id',
'q': '商品关键词',
'page_size': 20,
'fields': 'num_iid,title,pict_url,small_images,reserve_price,zk_final_price,user_type,provcity,item_url,seller_id,volume,nick,shop_title,zk_quan_info,event_start_time,event_end_time,tk_rate,tk_total_sales,price,item_category,time_stamp,now_price,origin_price'
}
# 构建签名
def sign(params):
sorted_params = sorted(params.items(), key=lambda x: x[0])
query_str = ''
for k, v in sorted_params:
query_str += f'{k}{v}'
query_str += secret
return hashlib.md5(query_str.encode('utf-8')).hexdigest().upper()
# 添加签名到请求参数
params['sign'] = sign(params)
# 发送请求
response = requests.post(api_url, params=params)
data = response.json()
# 解析历史价格
if 'tbk_dg_material_optional_response' in data:
items = data['tbk_dg_material_optional_response']['result_list']['map_data']
for item in items:
print(f'商品ID:{item["num_iid"]}, 历史价格:{item["origin_price"]}')
第五步:享受成果
现在,你已经能够获取商品的历史价格了。你可以把这些信息保存下来,或者做成一个漂亮的图表,展示给你的朋友们看。
记住,爬虫是个强大的工具,但它也是个双刃剑。用得好,它能帮你省钱;用得不好,可能会惹上麻烦。所以,请合理使用爬虫,遵守法律法规,尊重网站的robots.txt文件。