自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 一文讲明白大模型显存占用(只考虑单卡)_如果模型比单机显存大怎么办

顾名思义,混合精度训练就是将多种不同的精度数据混合在一起训练,《 MIXED PRECISION TRAINING 》这篇论文里将FP16和FP32混合,优化器用的是Adam,如下图所示:MIXED PRECISION TRAINING论文里的训练流程图按照训练运行的逻辑来讲:Step1:优化器会先备份一份FP32精度的模型权重,初始化好FP32精度的一阶和二阶动量(用于更新权重)。Step2:开辟一块新的存储空间,将FP32精度的模型权重转换为FP16精度的模型权重。

2024-10-11 11:44:34 1898

原创 【新进展】知识图谱+多智能体大模型

总体而言,本文提出的“多图多智能体递归检索”方法通过结合图结构和多智能体系统,解决了传统法律文档检索方法中的诸多瓶颈,特别是在处理复杂的法律条款依赖关系时展现了其优势。具体来说,在实验中,RAG方法能够在短时间内完成对复杂法律文档的递归检索,返回的结果不仅包含了直接相关的条款,还能够递归检索到与这些条款有引用关系的其他条款。每个智能体负责检索法律文档的一个特定部分,并与其他智能体协作,通过递归的方式寻找与当前检索内容相关的其他条款或文档。,其中节点代表文档中的条款或章节,边表示不同条款之间的关系。

2024-10-10 13:50:08 1448

原创 知识图谱构建方法汇总!

知识图谱构建过程是一个人机结合的不断迭代过程,以机器自动学习为主、专家定义与修正结合。需要人工介入的工作包括Schema定义、部分结构化知识准备、机器学习结果校验,依据用户的反馈、语料的增加与更新,不断进行模型的更新与迭代。专业领域的知识图谱已经构建完成,在其具备的特有应用形态,与领域数据和业务场景相结合后,将实际助力企业在该领域取得实际的商业价值。现今知识图谱在很多行业中都有了成功的应用。

2024-10-10 13:48:52 256

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除