YOLO系列
YOLO-V4
V4贡献:
1. 亲民政策 , 单GPU就能训练的非常好 , 接下来很多小模块都是这个出发点
2. 两大核心方法 ,从数据层面和网络设计层面来进行改善
3. 消融实验 , 感觉能做的都让他给做了 ,这工作量不轻
4. 全部实验都是单GPU完成 ,不用太担心设备了
Bag of freebies(BOF):
1. 只增加训练成本 , 但是能显著提高精度 , 并不影响推理速度
2. 数据增强: 调整亮度、 对比度、 色调、 随机缩放、 剪切、 翻转、 旋转
3. 网络正则化的方法: Dropout、 Dropblock等
4. 类别不平衡 , 损失函数设计
Mosaic data augmentation: 方法很简单 ,参考CutMix然后四张图像拼接成一张进行训练
数据增强:
1. Random Erase: 用随机值或训练集的平均像素值替换图像的区域
2. Hide and Seek: 根据概率设置随机隐藏一些补丁
DropBlock:之前的dropout是随机选择点(b) , 现在吃掉一个区域
GIOU损失:(公式)
DIOU损失:(公式)
CIOU损失:(公式)
DIOU-NMS:(公式)
M ish:(公式)
eliminate grid sensitivity:(公式)
整体网络架构
今日份学习总结完毕(=^▽^=)