图像识别技术与应用①⑥

YOLO系列

YOLO-V4

V4贡献:

1. 亲民政策 , 单GPU就能训练的非常好 , 接下来很多小模块都是这个出发点

2. 两大核心方法 ,从数据层面和网络设计层面来进行改善

3. 消融实验 , 感觉能做的都让他给做了 ,这工作量不轻

4. 全部实验都是单GPU完成 ,不用太担心设备了

 

Bag of freebies(BOF):

1. 只增加训练成本 , 但是能显著提高精度 , 并不影响推理速度

2. 数据增强: 调整亮度、 对比度、 色调、 随机缩放、 剪切、 翻转、 旋转

3. 网络正则化的方法: Dropout、 Dropblock等

4. 类别不平衡 , 损失函数设计

 

Mosaic data augmentation: 方法很简单 ,参考CutMix然后四张图像拼接成一张进行训练

数据增强:

1. Random Erase: 用随机值或训练集的平均像素值替换图像的区域

2. Hide and Seek: 根据概率设置随机隐藏一些补丁

DropBlock:之前的dropout是随机选择点(b) , 现在吃掉一个区域

GIOU损失:(公式) 

 

DIOU损失:(公式)

 

CIOU损失:(公式)

  

 

DIOU-NMS:(公式)

M ish:(公式)

eliminate grid sensitivity:(公式)

 

整体网络架构

今日份学习总结完毕(=^▽^=) 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值