无注释版
#include<iostream>
#include<cstring>
#include<cstdlib>
using namespace std;
bool ju(int n, int s[], int len, bool a[]) {
memset(a, 0, n * sizeof(bool));
for (int j = 0; j < len; j++) {
if (a[s[j] % n]) {
return false;
}
a[s[j] % n] = true;
}
return true;
}
int main() {
int n;
cin >> n;
int* s = new int[n];
for (int i = 0; i < n; i++) cin >> s[i];
bool* d = new bool[1000001]();
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
d[abs(s[i] - s[j])] = true;
}
}
bool* a = new bool[1000001];
for (int k = n;; k++) {
bool flag = true;
for (int t = k; t <= 1000000; t += k) {
if (d[t]) {
flag = false;
break;
}
}
if (flag&&ju(k, s, n,a)) {
cout << k << endl;
break;
}
}
delete[] s;
delete[] d;
delete[] a;
return 0;
}
注释版
//本段代码优化了很多处,才正好卡在极限时间AC了。。。
//思路是通过一个个枚举K值来找出合适的最小K
#include<iostream>
#include<cstring>
#include<cstdlib>//abs函数用来计算绝对值
using namespace std;
//判断余数是否相同
bool ju(int n, int s[], int len, bool a[]) {
memset(a, 0, n * sizeof(bool));
for (int j = 0; j < len; j++) {
//如果已经有相同的余数,则K不符合条件,返回false
if (a[s[j] % n]) {
return false;
}
a[s[j] % n] = true;
}
//如果没有余数相同则符合条件,返回true
return true;
}
int main() {
int n;
cin >> n;
//优化1:动态内存分配
int* s = new int[n];//意思是开了一个s的数组,存上n个数据
for (int i = 0; i < n; i++) cin >> s[i];
//优化2:差值标记,如果一个差值d是K的倍数则一定不满足条件,因为余数相同
//bool类型的动态内存分配,每个数据要么是true要么是false,()的意思是1000001个数据全部初始化为false
bool* d = new bool[1000001]();
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
d[abs(s[i] - s[j])] = true;
}
}
//优化5:将a定义在主函数中,避免在ju函数中多次定义和释放
//a的作用是存储数据,没有余数时存储false,有一个余数时存储true,又有一个相同的余数时存储false
bool* a = new bool[1000001];
//找出最小K
//优化3:从n开始找
for (int k = n;; k++) {
bool flag = true;
for (int t = k; t <= 1000000; t += k) {
//如果差值是K的倍数则不符
if (d[t]) {
flag = false;
break;
}
}
//优化4:先判断差值再判断函数,减少函数调用次数
if (flag && ju(k, s, n, a)){
cout << k << endl;
break;
}
}
//动态规划完成后需要释放内存
delete[] s;
delete[] d;
delete[] a;
return 0;
}