P4155 [SCOI2015] 国旗计划

P4155 [SCOI2015] 国旗计划


思路: 

一开始,我对这题一点思路都没有,只知道这是环,要拆环成链。

然后看了题解,才发现要先排序(要记录此人的位置),我才发现这句话

每名边防战士的奔袭区间都不会被其他边防战士的奔袭区间所包含。这句话包含两个信息:

1.战士与战士左边和右边的站点一定不相同(l1!=l2)&&(r1!=r2)(如果相同,必有一个战士被包含,错误❌)

2.排完序之后他的区间只能为以下三种:

   

第三种因为 数据保证整个边境线都是可被覆盖的。pass❌

然后我就发现他每选一人的最优解,是距此站点右端点最近的左站点人。

到这里就应该有纯暴力的思路了:每个战士从自己的位置开始遍历,直到右站点的值>此战士左端点的值+m(总站点)结束,但这种情况的时间复杂度为O(n^2)。超限

从这我才想到用刚学的ST表。这个ST表我还是看题解才知道怎么写(还是太拉了)。

这个题解的精妙之处在于,它a[][0]记录的是最优操作的坐标,这样它在查询时,k个人之后的右站点的值<此战士左端点的值+m,他的点可以持续跟进。(不理解的可以先看代码,我表达的不是很清楚)

查询的思路就是从最大的区间遍历,满足它在查询时,满足右站点的值<此战士左端点的值+m,ans+=倍增的人数,右站点的值>此战士左端点的值+m时,ans不变,继续遍历。

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<iostream>
#include<bits/stdc++.h>
using namespace std;
# define MAX0 18+1
int a[400006][MAX0];//ST表
//int Log[400006];
int n, m,nn;
struct ss {
    int i;//起始人,方便最后打印
    int l, r;//l不可能相等,否则必有一个被包围,不符合条件
}b[400005];//n的2倍(化环成链)
int c[200006];
int max0 = 0;//最多有多少行

//ST表初始化
void ChuST() {
    int post = 1;//post战士左端点的值递增,右站点的值也递增,所以post可以持续递增
    for (int i = 1; i <= 2 * n; i++) {
        while (post<=2*n&&b[post].l <= b[i].r) {//post战士左端点的值>直到右站点的值结束
            post++;
        }
        a[i][0] = post - 1; //a[][0]记录的是最优操作的坐标
    }
    for (int i = 1; (1<<i) <=n; i++) {
        max0++;                         //计算最多有多少行
        for (int j = 1; j  <= 2*n; j++) {
            a[j][i] = a[a[j][i-1]][i - 1];//(不太会解释)此站点的(1<<i-1)个战士的最优解的战士(1<<i-1)的解
        }
    }
}
//查询操作(我没能力表达不太好表达原因,看不懂的用笔画出一个例子的如下遍历过程理解理解)
void FuZhi(int w) {
    int r = b[w].r+m;
    int ans = 0; int jj = w;
    for (int j = max0; j >= 0; j--) {
        if (b[a[jj][j]].r < r) {
            jj = a[jj][j];
            ans += 1 << j;
        }
    }
    c[b[w].i] = ans + 1;//保证位置正确
}
int main() {
    ios::sync_with_stdio(false);        // 禁用同步
    cin.tie(nullptr);                   // 解除cin与cout绑定
    int j = 0;
    int p = 1;
    cin >> n >> m;
    for (int i = 1; i <= n; i++) {
        cin >> b[i].l >> b[i].r;
        if (b[i].r < b[i].l) {
            b[i].r += m;//小于时+m
        }
        b[i].i = i;
    }
    sort(b + 1, b + n + 1, [](const ss aa, const ss bb) {
        return aa.l < bb.l;
        });//排序
    //化环成链,保证超过m(及b[i].r < b[i].l可以向后遍历)
    nn = n;
    for (int i = 1; i <= n; i++) {
        nn++;
        b[nn].i = b[i].i;
        b[nn].l = b[i].l + m;
        b[nn].r = b[i].r + m;
    }
    ChuST();
    for (int i = 1; i <= n; i++) {
        FuZhi(i);
    }
    for (int i = 1; i <= n; i++) {
        cout << c[i] << " ";
    }
    cout<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

^O^凡人多烦事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值