5.2.2二叉树的性质

一、二叉树的常考性质

  1.设非空二叉树中度(度:有几个分支就有几个度)为0、1、2的结点个数分别为N0,N1,N2。则N0=N2+1。(叶子结点比二分支结点多一个)

   假设树中结点总数为N,则 1) N=N0+N1+N2。

                                              2) N=N1+2N2+1。
                                          由 2)-1)== N0=N2+1。(树的结点数=总度数+1)

2.二叉树第i层至多有  2^(i-1)个结点  (i>=1)
    M叉树第i层至多有M^(i-1)个结点  (i>=1)

3.高度为h的二叉树至多有2^h -1个结点。(满二叉树)

   高度为h的m叉树至多有m^h -1 /m-1个结点。

   等比数列求和公式-----emmmm懒得打了,去找宋浩老师吧。

二、完全二叉树的常考性质

 1.具有n个(n>0)结点的完全二叉树的高度h为 [log 2^(n=1)]或[log2^n]+1。

    高为h的满二叉树有 2^h -1个结点。

    高为h-1的满二叉树有 2^(h-1)  -1个结点。

第一个式子:

第二个式子:

  高为h-1的满二叉树有 2^(h-1)  -1个结点。

  高为h的完全二叉树至少有2^(h-1)个结点,至多有2^h -1h个结点。

2.对于完全二叉树,可以由结点数n推出度为0、1、2的结点个数为n0,n1,n2。

  完全二叉树最多只有一个度为1的结点。

  即:n1=0或1

   n0=n2+1--->no+n2一定是奇数---->

若完全二叉树有2k个(偶数)个结点,则必有n=1,n0=k,n2=k-1。
若完全二叉树有2k-1个(奇数)个结点必有n1=0,n0=k, n2=k-1。

总结:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值