一、二叉树的常考性质
1.设非空二叉树中度(度:有几个分支就有几个度)为0、1、2的结点个数分别为N0,N1,N2。则N0=N2+1。(叶子结点比二分支结点多一个)
假设树中结点总数为N,则 1) N=N0+N1+N2。
2) N=N1+2N2+1。
由 2)-1)== N0=N2+1。(树的结点数=总度数+1)
2.二叉树第i层至多有 2^(i-1)个结点 (i>=1)
M叉树第i层至多有M^(i-1)个结点 (i>=1)
3.高度为h的二叉树至多有2^h -1个结点。(满二叉树)
高度为h的m叉树至多有m^h -1 /m-1个结点。
等比数列求和公式-----emmmm懒得打了,去找宋浩老师吧。
二、完全二叉树的常考性质
1.具有n个(n>0)结点的完全二叉树的高度h为 [log 2^(n=1)]或[log2^n]+1。
高为h的满二叉树有 2^h -1个结点。
高为h-1的满二叉树有 2^(h-1) -1个结点。
第一个式子:
第二个式子:
高为h-1的满二叉树有 2^(h-1) -1个结点。
高为h的完全二叉树至少有2^(h-1)个结点,至多有2^h -1h个结点。
2.对于完全二叉树,可以由结点数n推出度为0、1、2的结点个数为n0,n1,n2。
完全二叉树最多只有一个度为1的结点。
即:n1=0或1
n0=n2+1--->no+n2一定是奇数---->
若完全二叉树有2k个(偶数)个结点,则必有n=1,n0=k,n2=k-1。
若完全二叉树有2k-1个(奇数)个结点必有n1=0,n0=k, n2=k-1。
总结: