二叉树(上)-数据结构

 文章目录

一、二叉树的遍历

        1.先、中、后序遍历

        2.层序遍历

二、二叉搜索树

        1.定义

        2.Find(查找)

        3.Insert(插入)

        4.Delete(删除)


注:二叉树定义:

typedef struct tnode *Position;
typedef Position Bintree;
struct tnode {
	int data;
	Bintree left;
	Bintree right;
};

一、二叉树的遍历

1.先、中、后序遍历

(1)先序遍历

        遍历过程为:

  1. 访问根结点;
  2. 先序遍历其左子树
  3. 先序遍历其右子树
void PreorderTraversal(Bintree BT)
{
	if(BT)
	{
		printf("%d",BT->data);
		PreorderTraversal(BT->left);
		PreorderTraversal(BT->right);
	}
}

例:

顺序是:ABDFECGHI

(2)中序遍历

        遍历过程为:

  1. 中序遍历其左子树
  2. 访问根结点
  3. 中序遍历其右子树
void InorderTraversal(Bintree BT)
{
	if(BT) {
		InorderTraversal(BT->left);
		printf("%d",BT->data);
		InorderTraversal(BT->right);
	}
} 

例:

顺序是:DBEFAGHCI 

(3)后序遍历

        遍历过程为:

  1. 后序遍历其左子树
  2. 后序遍历其右子树
  3. 访问跟结点
void PostorderTraversal(Bintree BT)
{
	if(BT) {
		printf("%d",BT->data);
		PostorderTraversal(BT->left);
		PostorderTraversal(BT->right);
	}
} 

例:

顺序是:DEFBHGICA 


2、层序遍历

遍历从根结点开始,首先,将根结点入队,然后开始执行循环:结点出队,访问该结点,其左右儿子入队。

层序遍历基本过程:先根结点入队,然后:

  1. 从队列中取出一个元素
  2. 访问该元素所指结点
  3. 若该元素所指的左、右孩子的指针顺序入队
void levelordertravelsal(Bintree BT)
{
	Queue Q;
	Bintree T;
	if(!BT) {
		return;//若是空树直接返回 
	} 
	Q=CreateQueue(Maxsize);//创建并初始化队列
	AddQ(Q,BT);
	while(!isEmptyQ(Q)) {
		T=DeleteQ(Q);//出队
		printf("%d\n",T->data);
		if(T->left)
			AddQ(Q,T->left);//入队
		if(T->right)
			AddQ(Q,T->right);
	} 
}

二、二叉搜索树

1、定义

二叉搜索树(也称二叉排序树,二叉查找树):一颗二叉树,可以为空;如果不为空,满足以下性质:

        1.非空左子树的所有键值小于根结点的键值。

        2.非空右子树的所有键值大于其跟结点的键值。

        3.左右子树都是二叉搜索树。


2、Find(查找)

查找从根节点开始,如果树为空,返回NULL

若搜索树非空,则根结点关键字和X进行比较,并进行不同处理:

  1. 若X小于根结点键值,只需在左子树中继续搜索。
  2. 如果X小于根结点的键值,在右子树中进行继续搜索。
  3. 若两者比较结果是相等,搜索完成,返回指向此结点的指针。

用尾递归实现:

Position Find(int x,Bintree BST)
{
	if(!BST) return NULL;
	if(x>BST->data) {
		return Find(x,BST->right);
	} else if(x<BST->data) {
		return Find(x,BST->left);
	} else {
		return BST; 
	}
}

用非递归函数实现:

Position Find(int x,Bintree BST)
{
	while(BST) {
		if(x>BST->data) {
			BST=BST->right;
		} else if(x<BST->right) {
			BST=BST->left;
		} else {
			return BST;
		}
	}
	return NULL;
}

查找最大和最小元素:

1.最大元素一定是树的最右分支的端结点上:

Position Findmin(int x,Bintree BST)
{
	if(!BST) {
		return NULL:
	} else if(!BST->left) {
		return BST;//找到最左叶结点并返回
	} else if(!BST->right) {
		return Findmin(BST->left);//沿左分支继续查找
	}
}

 2.最小元素一定是在树的最左分支的端结点上:

Position Findmax(int x,Bintree BST)
{
	if(BST) {
		while(BST->right) {
			BST=BST->right;//沿右分支继续查找,直到最右叶结点
		}
	}
	return BST;
}

3、Insert(插入)

关键在于找到元素应该插入的位置

Bintree Insert(int x,Bintree BST)
{
	if(!BST) {
        //若原树为空,生成并返回一个结点的二叉搜索树
		BST=malloc(sizeof(struct tnode));
		BST->data=x;
		BST->left=BST->right=NULL;
	} else {
		if(x < BST->data) {
			BST->left=Insert(x,BST->left);//递归插入左子树
		} else if(x > BST->data) {
			BST->right=Insert(x,BST->right);//递归插入右子树
		}
	}
	return BST;
}

4、Delete(删除)

Bintree Delete(int X,Bintree BST,Position Temp)
{
	if(!BST )
		printf("未找到要删除的结点\n");
	else if(X<BST->data)
		BST->left=Delete(X,BST->left);//递归删除左子树 
	else if(X>BST->Data)
		BST->right=Delete(X,BST->right);//递归删除右子树 
	else {//要删除的结点 
		if(BST->left&&BST->right) {//被删除结点有左右两个子结点
			Temp=Findmin(BST->right);//在右子树中找最小的元素填充删除结点
			BST->Data=Temp->Data;
			BST->Right=Delete(BST->data,BST->right);//在删除结点的右子树中删除最小元素
		} else{ //被删除的结点只有一个结点或者无子结点 
			Temp=BST;
			if(!BST->left) {//有左子节点或者无子结点 
				BST=BST->right;
			}
			else if(!BST->right) {//有左孩子或无子结点
				BST=BST->left;
			}
			free(Temp);
		}
	}
	return BST;
}

考虑三种情况:

1.删除叶结点

直接删除,并再修改其父结点指针,置为NULL。

2.要删除的结点只有一个孩子结点

将其父结点的指针指向要删除结点的孩子结点

3.要删除的结点有左右两颗子树

用另一个结点替代被删除结点,右子树的最小元素或者左子树的最大元素

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值