本题要求实现一个函数,用下列公式求cos的近似值,精确到最后一项的绝对值小于e:
cos(x)=x0/0!−x2/2!+x4/4!−x6/6!+⋯
函数接口定义:
double funcos( double e, double x );
其中用户传入的参数为误差上限e和自变量x;函数funcos应返回用给定公式计算出来、并且满足误差要求的cos的近似值。输入输出均在双精度范围内。
裁判测试程序样例:
#include <stdio.h> #include <math.h> double funcos( double e, double x ); int main() { double e, x; scanf("%lf %lf", &e, &x); printf("cos(%.2f) = %.6f\n", x, funcos(e, x)); return 0; } /* 你的代码将被嵌在这里 */
样例输入 复制
0.01 -3.14
样例输出 复制
cos(-3.14) = -0.999899
double funcos( double e, double x )
{
double fenzi;
double fenmu=1;
int i=1;
int flag=1;
double sum=0;
double item=1.0;
while(fabs(item)>=e)
{
sum+=item;
flag=-flag;
fenzi=pow(x,2*i);
fenmu*=(2*i)*(2*i-1);
i++;
item=flag*fenzi/fenmu;
}
return sum+item;
}