图像识别技术

使用nn.Sequential按层顺序构建模型

使用OrderedDict方法

 继承nn.Module基类并应用模型容器构建模型

使用nn.Sequential模型容器

 

使用nn.ModuleList模型容器

 

 

使用nn.ModuleDict模型容器

 

 

 自定义网络模块

·残差块有两种,一种是正常的模块方式,将输入与输出相加,然后应用激活函数ReLU。 

 ·另一种是为使输入与输出形状一致,需添加通过1×1卷积调整通道和分辨率

 

·组合这两个模块得到现代经典RetNet18网络结构

训练模块

1.加载预处理数据集
2.定义损失函数
3.定义优化方法
4.循环训练模型
5.循环测试或验证模型
6.可视化结果

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值