一个 N×M 的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻 8 个格子中的一个即认为这两个数字相邻),求取出数字和最大是多少。
#include<stdio.h>
#include<string.h>
// 定义二维数组,用于存储相关数据,这里可以根据具体需求推测用途,比如可能是矩阵相关的数据
int a[100][100], b[100][100], n, m, max;
// 定义一个二维数组,表示8个方向的偏移量,常用于在二维平面上进行周围元素的遍历等操作
const int d[8][2] = { 1, 0, -1, 0, 0, 1, 0, -1, 1, 1, -1, 1, 1, -1, -1, -1 };
// 深度优先搜索函数,用于遍历相关的二维结构,寻找满足一定条件下的最优解(从代码中看可能是求最大和之类的)
// x表示当前行,y表示当前列,sum表示当前累计的和
void dfs(int x, int y, int sum) {
// 如果当前行达到了边界(这里假设n是行数,行的索引达到了n + 1 ,说明这一轮行遍历完了)
if (x == n + 1) {
// 如果当前累计的和大于之前记录的最大值max,则更新最大值
if (max < sum) {
max = sum;
}
return;
}
// 如果当前列达到了边界(m是列数,列索引达到了m + 1 ,说明这一行的列遍历完了)
if (y == m + 1) {
// 进入下一行的第一列继续搜索,并且传递当前的累计和
dfs(x + 1, 1, sum);
return;
}
// 先不选择当前位置的元素,继续搜索下一列(相当于当前元素不纳入求和等操作)
dfs(x, y + 1, sum);
// 如果当前位置b[x][y]为0(可能表示该位置未被访问或者符合某种条件,具体要看代码完整逻辑)
if (!b[x][y]) {
// 遍历8个方向,对相应方向上的b数组中的元素进行计数加1操作(可能用于标记周围元素被影响等情况)
for (int i = 0; i < 8; i++) {
b[x + d[i][0]][y + d[i][1]]++;++不能改为=1.
}
// 选择当前位置的元素,将其值累加到sum中,然后继续搜索下一列
dfs(x, y + 1, sum + a[x][y]);
// 回溯操作,把刚才在8个方向上对b数组元素加1的操作还原,方便下次搜索其他路径
for (int i = 0; i < 8; i++) {
b[x + d[i][0]][y + d[i][1]]--;--不能改为=0
}
}
}
int main() {
int t;
scanf("%d", &t);
// 循环t次,可能表示有t组测试数据
while (t--) {
// 初始化数组a的所有元素为0,sizeof(a)用于获取数组a的字节大小,保证全部元素被初始化
memset(a, 0, sizeof(a));
// 同样初始化数组b的所有元素为0
memset(b, 0, sizeof(b));
scanf("%d %d", &n, &m);
// 循环读入二维数组a的数据,这里i从1开始,推测数组实际使用时行索引从1开始,而不是0
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
scanf("%d", &a[i][j]);
}
}
max = 0;
// 从第一行第一列开始进行深度优先搜索,初始累计和为0
dfs(1, 1, 0);
printf("%d\n", max);
}
return 0;
}