电力变压器数据集中的故障分析:基于健康指数与气体成分特征的数据驱动方法
电力变压器数据集中的故障分析:基于健康指数与气体成分特征的数据驱动方法,采用多种方法进行数据分析、特征工程以及模型训练来预测或分类变压器健康状态。
以下文字及代码仅供参考。

电力变压器数据集中的故障分析
变压器可能由于各种原因而发生故障,但最常见的原因包括雷击、过载、磨损和腐蚀、电涌和潮湿。无论原因如何,结果都是显着的。变压器含有矿物油,可保持变压器冷却。当它变得过度充电时,接线会产生热量和火花。这种巨大的超压最终可能导致变压器破裂,发出巨大的轰鸣声、闪光声,并可能形成一个火球,从而产生从远处可以看到的大量烟雾。
数据集为Excel文件
健康指数和电力变压器生成包含 16 个特征的。不是DGA数据
Hydrogen Oxygen Nitrogen CO CO2 Ethylene Ethane Acethylene
对于电力变压器故障分析的数据集,健康指数和16个特征(如Hydrogen, Oxygen, Nitrogen, CO, CO2, Ethylene, Ethane, Acetylene等)的Excel文件,采用多种方法来进行数据分析、特征工程以及模型训练来预测或分类变压器的健康状态。这类分析的一般步骤:
1. 数据预处理
首先,需要加载数据并对数据进行初步清理和预处理。这包括处理缺失值、异常值检测与处理、数据类型转换等。
import pandas as pd
# 加载数据
df = pd.read_excel('path_to_your_excel_file.xlsx')
# 检查缺失值
print(df.isnull().sum())
# 根据实际情况填充或删除缺失值
df.fillna(method='ffill', inplace=True) # 或者使用其他方法
# 转换数据类型(如果需要)
# df['column_name'] = df['column_name'].astype('desired_type')
2. 特征工程
根据领域知识对现有特征进行变换或创建新的特征。例如,可以计算一些基于已有气体成分的新指标。
# 示例:创建新的特征 - 总烃量
df['Total_hydrocarbons'] = df['Ethylene'] + df['Ethane'] + df['Acetylene']
# 其他可能的特征工程操作...
3. 数据探索性分析(EDA)
通过可视化工具探索数据分布、相关性等信息,以更好地理解数据。
import seaborn as sns
import matplotlib.pyplot as plt
# 相关性热图
corr = df.corr()
sns.heatmap(corr, annot=True, fmt=".2f")
plt.show()
# 特征分布
df.hist(bins=50, figsize=(20, 15))
plt.show()
4. 模型选择与训练
可以选择不同的机器学习模型进行训练,并评估其性能。这里以随机森林为例:
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
# 假设最后一列是目标变量
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练模型
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
# 预测
predictions = model.predict(X_test)
# 打印报告
print(classification_report(y_test, predictions))
5. 模型优化
通过调整模型参数、特征选择等手段进一步优化模型性能。
6. 结果解释与部署
- 结果解释:分析模型预测结果,理解哪些特征对模型决策最重要。
- 部署:将模型部署到生产环境中,以便实时监控变压器的健康状况。
基础框架,具体实施时需要根据实际数据集的特点和业务需求进行适当调整。