基于 PyTorch 的 TransU-Net 卷积神经网络的遥感图像语义分割模型进行不同城市建筑物的精准提取 来继续遥感图像语义分割,卷积神经网络 注意力机制 遥感图像

基于 PyTorch 的 TransU-Net 模型进行不同城市建筑物的精准提取 来继续遥感图像语义分割
在这里插入图片描述

遥感图像语义分割,遥感建筑物数据集,基于Pytorch框架,针对不同城市建筑物精准提取。

遥感图像中包含丰富的地理空间信息,从遥感图像中了解这些信息对城市规划、
地形图的制作和更ᯠ、林业资源监测和管理等具有重要的实用价值。近年来,遥感图
像语义分割受到人们广泛关注,由于图像的成像过程会受到距离、光照、地理位置、角度等影响,遥感图像中不同类别的物体可能会产生相似的视觉特征,同一类物体则可能存在较大差异,这就导致遥感图像语义分割存在不确定现象。
卷积神经网络凭借其高超的非线性表征能力,能从海量样本ᮠ据中学习到更深
层次、更本质性的特征,已被广泛用于遥感领域。本᮷主要研究了卷积神经网络在遥感图像语义分割中的应用,重点解决分割任务中由遥感图像固有不确定性引起的分割问题,ᨀ升遥感图像语义分割性能。具体研究工作概括如下:
在这里插入图片描述

(1)针对遥感图像分割中存在的阴影干扰,分割不准确,背Ჟ信息复杂问题,
ᨀ出了一种模糊邻域卷积神经网络。首先,将模糊学习的思想引入到深度学习中,利用模糊邻域模块计算样本间的模糊相似度,善类内异质与类间复杂造成的分割结果不准确问题,ᨀ高分割准确度。其次,增加一组注意力模块,该模块采用融合深浅特征的权重系ᮠ,突出特征图中目标物体,将目标物体与复杂的背Ჟ信息分离,实现遥感图像的精细分割。最后,在三个遥感ᮠ据集上进行有᭸性验证。结果表᰾,ᨀ出的模糊邻域卷积神经网络具有较高的分割精度。
(2)针对遥感图像分割中尺度信息复杂和物体纹理相似问题,ᨀ出一种模糊多
尺度卷积神经网络,深入探讨基于卷积神经网络遥感图像分割ᯩ法。首先,为了增加
对不同大小和形状物体的᭿感性,利用残差并行分᭟获取各阶段的多级语义信息。然
后通过计算像素样本间的模糊相似度,减少不确定因素对遥感图像分割精度的干扰。
随后,在网络结构中嵌入多尺度特征ᨀ取模块,通过᧗制᧕受域大小,对高级语义特
征图进行有᭸编码,丰富最终特征表达能力。最后,在两个遥感ᮠ据集上进行实验验
证。结果表᰾,所ᨀ出的网络得到了更好的分割结果。
!在这里插入图片描述

TransU-Net
在这里插入图片描述

注意力机制起源于人类的视觉系统。

在复杂场Ჟ下,通过注意力机制,人类可以
精确迅速地关注重要部分,忽略不相关的信息,并按重要程度对关注中心进行优先级
排序。与人类视觉注意类似,注意力机制往往关注关键特征,通过赋予权重等ᯩ式将
学习资源偏向信息量大、更具有价值的部分。

在这里插入图片描述
注意力机制示例

基于 PyTorch 的 TransU-Net 模型进行遥感图像语义分割,特别是针对不同城市建筑物的精准提取,完成以下几个步骤:

  1. 数据准备:确保你有合适的遥感图像和对应的标注数据。
  2. 模型构建:实现 TransU-Net 模型。
  3. 训练过程:编写训练代码,包括数据加载、损失函数、优化器等。
  4. 推理与评估:在测试集上进行推理,并评估模型性能。

一、数据准备

假设你同学包含遥感图像和对应标注的数据集。数据集应该分为训练集、验证集和测试集。

二、TransU-Net 模型构建

TransU-Net 是一种结合了Transformer和U-Net结构的模型,用于医学图像分割。我们可以对其进行一些修改以适应遥感图像分割任务。

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import ViTModel

class TransUNet(nn.Module):
    def __init__(self, img_size=256, patch_size=16, num_classes=2, in_channels=3):
        super(TransUNet, self).__init__()
        
        self.vit = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(768, 512, kernel_size=2, stride=2),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.ConvTranspose2d(64, num_classes, kernel_size=1)
        )
        
    def forward(self, x):
        # 使用ViT提取特征
        vit_output = self.vit(x)['last_hidden_state']
        b, n, c = vit_output.shape
        h, w = int(n**0.5), int(n**0.5)
        vit_output = vit_output.permute(0, 2, 1).reshape(b, c, h, w)
        
        # 使用解码器进行上采样
        output = self.decoder(vit_output)
        return output

# 初始化模型
model = TransUNet()

三、训练过程

import os
import numpy as np
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from PIL import Image

# 数据集类
class RemoteSensingDataset(Dataset):
    def __init__(self, image_dir, mask_dir, transform=None):
        self.image_dir = image_dir
        self.mask_dir = mask_dir
        self.transform = transform
        self.images = os.listdir(image_dir)

    def __len__(self):
        return len(self.images)

    def __getitem__(self, idx):
        img_path = os.path.join(self.image_dir, self.images[idx])
        mask_path = os.path.join(self.mask_dir, self.images[idx].replace('.jpg', '.png'))
        image = Image.open(img_path).convert("RGB")
        mask = Image.open(mask_path).convert("L")

        if self.transform:
            image = self.transform(image)
            mask = self.transform(mask)

        return image, mask

# 数据预处理
transform = transforms.Compose([
    transforms.Resize((256, 256)),
    transforms.ToTensor(),
])

# 加载数据集
train_dataset = RemoteSensingDataset(image_dir='path/to/train/images', mask_dir='path/to/train/masks', transform=transform)
val_dataset = RemoteSensingDataset(image_dir='path/to/val/images', mask_dir='path/to/val/masks', transform=transform)

train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=4, shuffle=False)

# 训练参数
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

# 训练循环
num_epochs = 10
for epoch in range(num_epochs):
    model.train()
    for images, masks in train_loader:
        images, masks = images.to(device), masks.to(device)
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, masks.long())
        loss.backward()
        optimizer.step()

    print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

    # 验证
    model.eval()
    with torch.no_grad():
        total_val_loss = 0
        for images, masks in val_loader:
            images, masks = images.to(device), masks.to(device)
            outputs = model(images)
            val_loss = criterion(outputs, masks.long())
            total_val_loss += val_loss.item()
        avg_val_loss = total_val_loss / len(val_loader)
        print(f'Validation Loss: {avg_val_loss:.4f}')

四、推理与评估

# 测试集推理
test_dataset = RemoteSensingDataset(image_dir='path/to/test/images', mask_dir='path/to/test/masks', transform=transform)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False)

model.eval()
with torch.no_grad():
    for images, masks in test_loader:
        images, masks = images.to(device), masks.to(device)
        outputs = model(images)
        predicted_masks = torch.argmax(outputs, dim=1).cpu().numpy()
        
        # 可视化结果
        for i in range(len(predicted_masks)):
            plt.figure(figsize=(12, 6))
            plt.subplot(1, 3, 1)
            plt.imshow(np.transpose(images[i].cpu().numpy(), (1, 2, 0)))
            plt.title('Input Image')
            plt.axis('off')
            
            plt.subplot(1, 3, 2)
            plt.imshow(masks[i].cpu().numpy(), cmap='gray')
            plt.title('Ground Truth Mask')
            plt.axis('off')
            
            plt.subplot(1, 3, 3)
            plt.imshow(predicted_masks[i], cmap='gray')
            plt.title('Predicted Mask')
            plt.axis('off')
            
            plt.show()

以上代码提供了一个基本框架,你可以根据具体需求进行调整和优化。例如,可以添加更多的数据增强方法、调整模型参数、使用不同的损失函数等。

Potsdam 遥感ᮠ据集
Potsdam 遥感数据集
在这里插入图片描述
结果图

伴随着遥感技术的发展,遥感图像语义分割在遥感的各个应用领域都发挥着十
分重要的作用。但遥感图像固有的不确定性成为遥感图像语义分割发展的重要制约
因素。本᮷回顾已有的研究工作,分析其中的创ᯠ之点与不足之处,结合ᯠ的研究思
路对现有的研究工作进行补充与发展。具体地,本᮷的主要创ᯠ研究成果如下:
(1)ᨀ出一种基于模糊邻域卷积神经网络以解决遥感图像分割问题。首先,利
用模糊邻域模块计算样本间的模糊相似度,克服遥感图像固有的不确定性问题。其次,利用多注意力门᧗模块融合深浅特征,有᭸去除浅层特征图像中的噪声,同ᰦ更稳健地补偿深层特征图像中的细节。最后,在三个遥感ᮠ据集上进行实验,实验结果表᰾,所ᨀᯩ法可以较好地识别阴影信息和较小的目标,并能识别目标边缘边界,同
ᰦ保持较高的准确度。
(2)ᨀ出一种模糊多尺度卷积神经网络用于遥感图像语义分割。首先,该ᯩ法
通过下采样将遥感特征ᮠ据送入主干网络,通过残差并行分᭟连᧕上采样与下采样
获取多级语义特征并融合到主干网络,从而增加对不同大小和形状物体的᭿感性。其次,为了᭦集不同级别的上下᮷信息,通过嵌入多尺度特征ᨀ取模块,实现在不᭩变特征图尺寸大小的情况下,通过᧗制᧕受域大小,有᭸对高级语义特征图进行编码。
最后,通过反卷积输出分割结果。实验选取两组遥感ᮠ据进行地物分割实验,分析验
证了该ᯩ法在遥感图像分割任务上的有᭸性和适用性。
基于卷积神经网络的遥感图像语义分割ᯩ法在实际应用中取得了优秀的表现。
然而,由于遥感图像的稀缺性,᭦集包含各种变化的大尺度遥感图像费ᰦ费力。弱监
督学习ᱟ在标注ᮠ据稀缺的情况下,利用大量未标注ᮠ据训练网络。这样可以有᭸地
利用已有的ᮠ据资源,同ᰦᨀ高分割准确率和泛化能力。因此,弱监督学习将成为今
后研究的重点ᯩ向。

以上文字及代码仅供参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值